

Delta Journal of Science

Available online at https://djs.journals.ekb.eg/

Research Article

BIOCHEMISTRY

Preparation and Investigation of Egyptian-Cultivated Pumpkin Seed Oil: Antioxidant Activity and Key Constituents via GC-MS Characterization and ADMET Squalene Analysis

Ola M. Yehia^{1*}; Abeer A. Khamis¹; Elsayed I. Salim²; Marian N. Gerges¹

*Corresponding author: Ola M. Yehia e-mail: <u>ola30974631@science.tanta.edu.eg</u>

Received: 8/11/2025 **Accepted:** 17/11/2025

KEY WORDS

ABSTRACT

Pumpkin seed oil, DPPH, ABTS, GC-MS analysis, Squalene.

Pumpkin seed oil, extracted from Cucurbita pepo seeds cultivated in Egypt, possesses significant nutritional and therapeutic potential due to its rich bioactive compound profile. This study aimed to evaluate the chemical composition and antioxidant activity of the oil to support its applications in health and industry. Using Soxhlet extraction, a yield of 38.15% (w/w) was obtained. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed the presence of Linoleyl acetate (32.12%), Glycidyl (Z)-9-nonadecenoate (19.45%), and Squalene (3.16%) as major components. The methylated oil analysis identified unsaturated fatty acids, including 9,12-Octadecadien-1-ol (46.17%) and 6-Octadecenoic (24.30%). including acid Antioxidant assays, 2,2-diphenyl-1picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6sulfonic acid (ABTS), reducing power, and phosphomolybdate methods revealed a strong radical scavenging and reducing potential in a dosedependent manner. ADMET analysis of Squalene revealed favorable pharmacokinetics, including compliance with Lipinski's Rule of Five, absence of toxicity or carcinogenicity alerts, and moderate human intestinal absorption. These findings highlight the antioxidant and therapeutic potential of pumpkin seed oil, emphasizing its suitability for applications in functional foods, pharmaceuticals, and cosmetics. Future research should focus on isolating and optimizing key bioactive compounds for targeted applications.

¹Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

²Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt.

Introduction

Medicinal plants have long been used in traditional healthcare systems, particularly in developing countries, to prevent and manage diseases related to inflammation and oxidative stress. Their therapeutic potential lies in the presence of bioactive compounds with antioxidants and anti-inflammatory properties, making them increasingly popular even in developed nations (Hlatshwayo et al., 2025). The pumpkin plant (Cucurbita pepo) belongs to the family Cucurbitaceae and is characterized by its climbing or trailing growth habit, large lobed leaves, and vibrant yellow flowers. Its fruits vary in size, shape, and color, depending on the cultivar, and contain numerous flat, oval seeds (Rezk et al., 2022). In Egypt, pumpkin is cultivated on approximately 19,309 hectares, yielding total production of 417,109 tons annually, highlighting agricultural its economic significance (Shehata et al., 2023).

Pumpkin is a highly versatile plant, valued for its nutritional and healthpromoting properties. Different parts of the pumpkin, including the pulp, seeds, leaves, and peels, have significant uses in food and health industries. Pumpkin byproducts, such as peels and seeds, are also excellent sources of bioactive compounds that can enhance nutritional value when effectively utilized (Rosales Pumpkin et al., 2025). seeds, in highly particular are nutritious, containing proteins, vitamin C. potassium, magnesium, and moderate amounts of calcium, zinc, and copper, which are essential for maintaining good health. They are also rich in fibers, carotenoids, antioxidants, and

phytosterols, which contribute to their anti-inflammatory, antidiabetic, and neuroprotective properties (Aziz et al., 2023). Furthermore, they are a valuable raw material in the food industry, used to enhance the nutritional profile of products such as flour and protein-rich meals (Villamil et al., 2023).

Pumpkin seed oil is a natural product extracted from the seeds of Cucurbita pepo and other pumpkin varieties. It is typically prepared using methods such as cold pressing, solvent extraction, and supercritical CO₂ extraction (Hu et al., 2024). The oil holds great importance due to its numerous health benefits and wide applications in the food. pharmaceutical, and cosmetic industries (Samec et al., 2022). It is widely used to support cardiovascular health, alleviate symptoms of benign prostatic hyperplasia, regulate hormones, and reduce the impact of oxidative stressrelated conditions such as diabetes and neurodegenerative diseases. antioxidant and moisturizing properties also make it a valuable ingredient in skincare products, sunscreens, therapeutic formulations (Hu et al., 2023).

The oil is rich in unsaturated fatty acids, particularly linoleic acid (omega-6) and oleic acid (omega-9), with smaller amounts of saturated fatty acids like palmitic and stearic acids. It also contains bioactive compounds such as tocopherols (vitamin E), carotenoids (lutein, zeaxanthin, and β -carotene), phytosterols (β -sitosterol and Δ 7-sterols), polyphenols, and minerals like magnesium, potassium, and zinc (**Singh and Kumar, 2023**). These components collectively contribute to its antioxidant,

anti-inflammatory, and therapeutic properties. For instance, tocopherols and polyphenols help combat free radical damage, carotenoids support eye and immune health, and phytosterols cholesterol regulation promote prostate health (Batool et al., 2022). Despite its recognized benefits, the complex composition of pumpkin seed oil makes it challenging to identify the responsible for compounds therapeutic effects. The interactions among its bioactive components, such as fatty acids, tocopherols, carotenoids and squalene are not fully understood, requiring further research to optimize its applications in health, nutrition, and industry.

This study aims to identify the major chemical components in pumpkin seed oil from seeds cultivated in Egypt. Determining the most abundant compounds could enable their isolation and targeted use in therapeutic and industrial applications, enhancing the oil's value and paving the way for more effective functional foods, supplements, and pharmaceuticals.

Materials and Methods Chemicals and reagents

The chemicals used in this study were of a high analytical grade and sourced from reputable suppliers.

Plant material

Pumpkin seeds were freshly purchased in March 2024 from Khedr El Attar store, El Moez Street, Hussain, Egypt. The pumpkins were cultivated in Beheira Governorate during the preferred planting season, from late March to April. The seeds were stored in a refrigerator at 4°C to maintain their quality. Prior to oil extraction, the seeds were sun-dried for two days to reduce

moisture content and prepare them for processing.

Oil preparation

The 100 g of pumpkin seeds sun-dried for two days showed a reduced weight to The seeds were coarsely 96.5g. powdered using a mortar and pestle. The extraction method was performed utilizing a Soxhlet apparatus with 250 mL of n-hexane as the extraction solvent Following a previously described method with some modifications (Chari et al., 2018). The solvent was heated at its boiling point (76°C), and the extraction process was carried out for 4 h, allowing for continuous solvent evaporation and condensation. Glass wool was used in the side arm to prevent solid particles from entering the solvent. After the process, the n-hexane was removed using a rotavapor, leaving the extracted pumpkin seed oil in the flask. The oil yield was determined by calculating the weight of the extracted oil, which was derived from its volume and density. The percentage of oil concentration was then calculated using the formula:

Oil Yield (%) =
$$(\frac{\text{Weight of oil (g)}}{\text{Weight of seeds after drying (g)}}) \times 100$$

The recovered oils were stored in a vial at 4°C until further examination was required.

Studying of pumpkin seed oil components

Oil methylation

Fatty acid methyl esters were prepared for GC-MS analysis following a previously described method (**Hagos et al., 2023**). One gram of extracted oil was mixed with 6 mL of 2% methanolic KOH in a 50 mL round-bottom flask. The mixture was heated at 60-70 °C for 1 h with constant stirring, then cooled to

room temperature. After adding 40 mL of n-hexane, the solution was transferred to a separatory funnel, and the organic layer was separated, dried over anhydrous sodium sulfate, and filtered through Whatman filter paper. The solvent was removed using a rotary evaporator to concentrate the methyl esters, which were stored at 4°C until GC-MS analysis.

Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

The chemical composition of pumpkin seed oil was analyzed using a Shimadzu HS-GC-MS system (QP2020) equipped with a mass spectrometer detector (MS) and a fused silica capillary column. Two samples were prepared: crude pumpkin seed oil extracted using a Soxhlet apparatus with n-hexane as the solvent, and methylated pumpkin seed oil prepared by converting the extracted oil into fatty acid methyl esters. The GCconditions for both MS analyses initial included an column temperature of 50°C for 3 min, followed by an increase at a rate of 5°C/min to 300°C, with a final hold of 10 min. The injection temperature was 280°C, and the injection mode was split with a ratio of 15:1. Helium was used as the carrier gas with a column flow rate of 1.37 mL/min. The ion source and interface temperatures were set at 220°C and 280°C, respectively, with a mass range of 35-500 m/z and a solvent cut time of 2 min. For the methylated sample, 1 µL was injected, and the retention times and mass spectra of the detected compounds were identified using the NIST17 library.

Antioxidant assays

Evaluation of DPPH radical scavenging activity

The free radical scavenging activity of pumpkin seed oil and squalene were evaluated using the DPPH radical, following a previously reported method (Molyneux, 2004). Briefly, 0.1 mL of various concentrations of the oil sample was mixed with 3.9 mL of DPPH solution (0.003% w/v). The mixtures were shaken thoroughly and left to stand in the dark at room temperature for 1 h. After the reaction period, the decrease in absorbance of the solution was measured at 515 nm utilizing a Shimadzu UV-1800 UV-Vis spectrophotometer.

Assessment of ABTS radical scavenging activity

The ABTS radical scavenging activity of pumpkin seed oil and squalene were assessed spectrophotometrically by measuring the reduction in absorbance of the ABTS radical at 734 nm (**Re et al., 1999**). The activated ABTS solution was prepared by mixing 14 mM ABTS with 4.9 mM potassium persulfate and incubating in the dark for 16 h. In the assay, 0.1 mL of the sample was mixed with 3.9 mL of ABTS solution. The mixture was incubated for 6 min at room temperature, and the absorbance was recorded.

Reducing power assay

The reducing power of pumpkin seed oil and squalene were evaluated following a previously described method (Ayoola et al., 2008). Briefly, 1.25 mL of 1% w/v potassium ferricyanide solution was mixed with 1.25 mL of phosphate buffer (0.2 M, pH 7.6) and 0.5 mL of the oil. The mixture was incubated at 50°C for 30 min. After incubation, 1.25 mL of 10% w/v trichloroacetic acid was added the mixture, which was then centrifuged at 3000 rpm for 10 min. Following centrifugation, 1.25 mL of the supernatant was diluted with distilled water (1:2), and 0.25 mL of 0.1% w/v FeCl₃ solution added. The was

absorbance of the resulting solution was measured at 700 nm.

Phosphomolybdate assay

The total antioxidant capacity of pumpkin seed oil and squalene were determined using the method outlined in a previous study (**Khan et al., 2012**). Briefly, 2 mL of phosphomolybdate reagent was combined with 0.2 mL of the oil. The mixture was thoroughly mixed and incubated at 95°C for 90 min. After incubation, the absorbance of the solution was measured at 695 nm.

In Silico ADMET study

The **ADMET** characteristics were analyzed utilizing the ADMETlab 2.0 (available platform at https://admetmesh.scbdd.com/). The SMILES formats for compound were obtained from the PubChem database and submitted to the platform for ADMETlab 2.0 provided a analysis. comprehensive evaluation of the compounds' pharmacokinetics and toxicological profiles, supporting their stability for further research.

Results

Isolation of pumpkin seed oil

Approximately 40 mL of oil was obtained, which corresponds to a weight of 36.8 g, based on the density of pumpkin seed oil (0.92 g/mL). The oil concentration was calculated as 38.15% (w/w). The extracted oil was dark green in color and stored in a refrigerator at 4°C to maintain its stability until further analysis.

Analysis of Pumpkin Seed Oil Using GC-MS

The Gas Chromatography-Mass Spectrometry (GC-MS) analysis of the pumpkin oil sample identified multiple chemical constituents with varying retention times and relative abundances **Fig. (1).** The most dominant compound

was Linoleyl acetate (retention time: 43.259min), comprising 32.12% of the total detected components. This was followed Glycidyl by (Z)-9nonadecenoate (19.45%, retention time: 43.383min) and E, E, Z-1,3,12-Nonadecatriene-5.14-diol (12.00%,retention time: 58.574min). Other notable compounds include Myristic acid glycidyl ester (9.23%, retention 40.358min) time: and 9,12-Octadecadien-1-ol, (Z,**Z**)-(8.55%,retention time: 36.788min). Additionally, other constituents such as Squalene (3.16%, retention time: 48.996 min), Hexadecanoic acid, methyl ester (1.65%, time: 33.558min), retention Pentatriacontane (0.90%, retention time: 50.255min) were also detected **Table (1)**.

Analysis of Methylated Pumpkin Seed Oil Using GC-MS

The GC-MS analysis of the methylated pumpkin seed oil sample revealed the presence of several fatty acid methyl esters (FAMEs) and other volatile compounds Fig. (2). The chromatogram exhibited distinct peaks, with the most compound being abundant Octadecadien-1-ol, (Z, Z)- (retention time: 36.799min) contributing 46.17% of the total area. This was followed by 6-Octadecenoic acid, methyl ester, (Z)-(retention time: 36.965 min) with an area of 24.30%, percentage and Hexadecanoic acid, methyl ester (retention time: 33.557min) with 9.05% of the total area. Minor components included Heptadecanoic acid, 16-methyl-, methyl ester (4.45%, R.T.: 37.512min) and 1H-Pyrazole, 4,5-dihydro-3,5,5trimethyl- (0.78%, R.T.: 3.486min). Details of the identified compounds, times. and relative their retention abundances are summarized in Table (2).

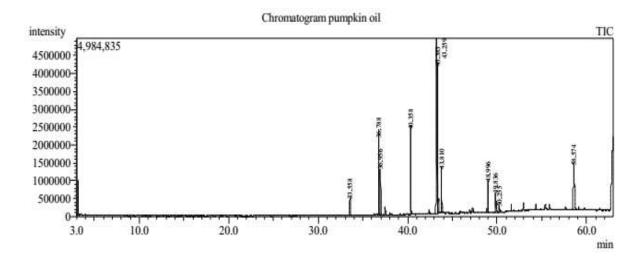


Fig. (1): Total Ion Chromatogram (TIC) of the pumpkin oil sample

Table (1): Major compounds identified in the pumpkin oil sample by GC-MS analysis.

Retention	Compound Name	Area %
Time (min)		
33.558	Hexadecanoic acid,	1.65
	methyl ester	
36.788	9,12-Octadecadien-1-	8.55
	ol, (Z,Z)-	
36.956	6-Octadecenoic acid,	4.53
	methyl ester, (Z)-	
40.358	Myristic acid glycidyl	9.23
	ester	
43.259	Linoleyl acetate	32.12
43.383	Glycidyl (Z)-9-	19.45
	nonadecenoate	
43.810	Myristic acid glycidyl	4.66
	ester	
48.996	Squalene	3.16
49.836	9,12-Octadecadien-1-	3.75
	ol, (Z,Z)-	
50.255	Pentatriacontane	0.90
58.574	E,E,Z-1,3,12-	12.00
	Nonadecatriene-5,14-	
	diol	

Table (2): major compounds identified in the methylated pumpkin oil sample by GC-MS analysis.

Retention	Compound Name	Area %
Time (min)	_	
3.117	Toluene	12.53
3.312	Hexane, 2,5-	0.67
	dimethyl-	
3.440	Heptane, 4,4-	0.35
	dimethyl-	
3.486	1H-Pyrazole, 4,5-	0.78
	dihydro-3,5,5-	
	trimethyl-	
33.557	Hexadecanoic acid,	9.05
	methyl ester	
36.799	9,12-Octadecadien-	46.17
	1-ol, (Z,Z)-	
36.965	6-Octadecenoic acid,	24.30
	methyl ester, (Z)-	
37.050	6-Octadecenoic acid,	0.85
	methyl ester, (Z)-	
37.512	Heptadecanoic acid,	4.45
	16-methyl-, methyl	
	ester	

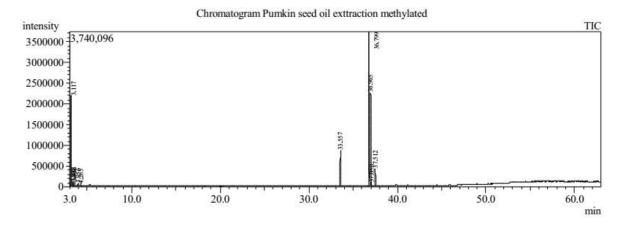


Fig. (2): Total Ion Chromatogram (TIC) of the methylated pumpkin oil sample

Antioxidant assays

The effect of pumpkin seed oil and/ or Squalene on DPPH radical scavenging activity

The DPPH scavenging activity of both pumpkin seed oil and squalene showed a progressive increase with increasing sample volumes. For pumpkin seed oil, the scavenging activity was minimal at lower volumes (e.g., 3.95% at 5 µl) and reached a maximum of 58.45% at 150 µl, with an IC₅₀ value of 88.88 μ l Fig. (3A). Similarly, squalene exhibited scavenging activity at smaller volumes (e.g., 5.12% at 0.5 µl) and achieved its highest activity of 58.45% at 2.5 µl. The IC₅₀ value for squalene was calculated to be approximately 2.1 µl **Fig. (3B)**.

The effect of Pumpkin Seed Oil and/or Squalene on ABTS radical scavenging activity

The ABTS radical scavenging activity demonstrated a proportional increase with the sample volume for both pumpkin seed oil and squalene. For pumpkin seed oil, the activity was minimal at smaller volumes but increased, gradually reaching maximum of approximately 80% at 150 µL, with an IC50 value of 73.78 µL Fig. (4A). In parallel, squalene showed a steady rise in scavenging activity, starting from lower volumes and peaking at around 65% at 2 µL, as illustrated in Fig. (4B).

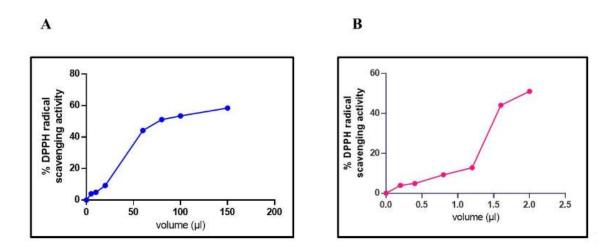
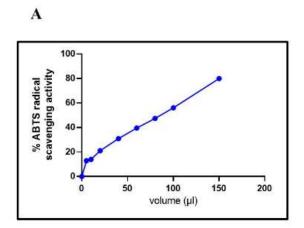



Fig. (3): % DPPH radical scavenging activity of (A) extracted pumpkin seed oil (B) Squalene

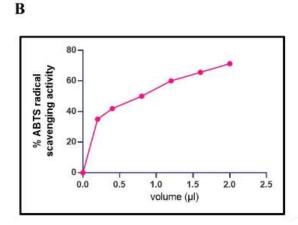
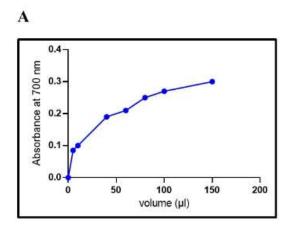



Fig. (4): % ABTS radical scavenging activity of (A) extracted pumpkin seed oil (B) Squalene

Evaluation of reducing power for Pumpkin Seed Oil and/or Squalene

The reducing power of both pumpkin seed oil and squalene increased consistently with the sample volume. For pumpkin seed oil, the highest reducing power was observed at 150 μ L, as indicated by the absorbance at 700 nm **Fig. (5A)**. Similarly, squalene exhibited a gradual rise in reducing power with increasing volume, reaching its peak at 2 μ L, as shown in **Fig. (5B)**.

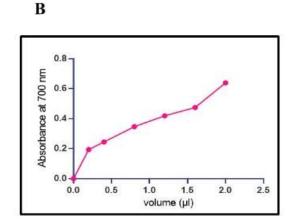
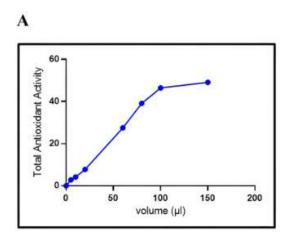



Fig. (5): Reducing power of (A) extracted pumpkin seed oil (B) Squalene.

Total antioxidant capacity of Pumpkin Seed Oil and/or Squalene

The total antioxidant capacity of pumpkin seed oil and squalene was determined using the phosphomolybdate assay, revealing a volume-dependent increase in antioxidant activity for both samples. For pumpkin seed oil, the activity rose from approximately 10 at

25 μ L to 30 at 75 μ L, and ultimately to 60 at 150 μ L, demonstrating a clear proportional relationship between volume and antioxidant capacity **Fig.** (6A). Likewise, squalene displayed a steady increase in antioxidant activity, reaching a maximum of around 40 at 2 μ L, as shown in **Fig.** (6B).

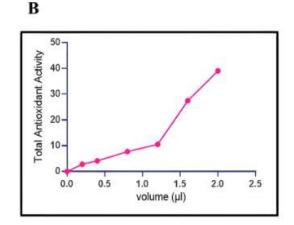


Fig. (6): Total Antioxidant Activity of (A) extracted pumpkin seed oil (B) Squalene.

ADMET features

The ADMET properties of Squalene were analyzed assess its to pharmacokinetics and safety profiles Fig. (7). Squalene satisfied Lipinski's Rule of Five with no violations. It showed moderate human intestinal absorption (HIA) scores and was unable to cross the blood-brain barrier (BBB), ensuring good CNS safety. It demonstrated a favorable safety profile with no AMES toxicity or carcinogenicity alerts. The findings highlight squalene's pharmacokinetics advantages and safety profile, as summarized in Table (3).

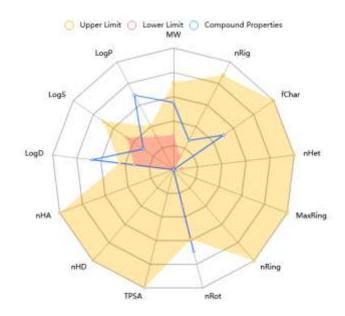


Fig. (7): ADMET profile of squalene

Table (3): ADMET properties of squalene

Property	Optimal Range	Squalene
Molecular Weight (g/mol)	≤ 500	410.39
Topological Polar Surface Area, Å ² (TPSA)	≤ 140	0.0
Partition Coefficient (LogP)	≤ 3	10.065
Number of Rotatable Bonds (nROT)	0~11	15
Hydrogen Bond Acceptors (HBA)	0–12	0
Hydrogen Bond Donors (HBD)	0–7	0
Human Intestinal Absorption (%)	≥ 30% (High)	54.8%
Blood-Brain Barrier (BBB)	No	No
AMES Toxicity	Non-toxic	Non-toxic
Carcinogenicity	Non-carcinogenic	Non-carcinogenic

Discussion

Pumpkin seeds are highly nutritious, rich in essential nutrients such as omega-3 fatty acids, magnesium, and zinc, making them a valuable addition to a healthy diet. They are known for their ability to support heart health, regulate cholesterol levels, and reduce the risk of chronic diseases due to their antioxidant anti-inflammatory properties (Bashir et al., 2025). Beyond the seeds, pumpkin seed oil has gained significant attention for its high content of bioactive compounds, offering numerous therapeutic benefits. This oil is versatile and used as a culinary ingredient and a dietary supplement, further highlighting the nutritional and medicinal value of pumpkin seeds and their oil (Alsalamah et al., 2025).

The method of extraction significantly influences the yield and composition of pumpkin seed oil, affecting nutritional quality, bioactive compound content, and overall therapeutic potential (Can-Cauich et al., 2019). The yield of pumpkin seed oil in this study was 41.45% (v/w), extracted using an organic solvent (hexane). In contrast, a previous study reported a yield of 7.8%, where the extraction was carried out using chloroform via maceration (Ikpa and Chidozie-Ikpa, 2024). Additionally, the yield obtained in this study is relatively high compared to the values reported in other countries, such as Uganda (35.6%) (Kukeera et al., 2015), Algeria (33.5%) (Benalia et al., 2015), and Bangladesh (23%) (Amin et al., 2019). However, it is slightly lower than yields reported from Ethiopia (43.6% to 50.5%) (Hagos et al., 2023) and some studies in Nigeria, where values ranged from 42.1% to 55.8% (Uba, 2019, Yusuf et al., 2021, Bwade et al., 2013). These variations in oil yield can be attributed to differences in pumpkin seed varieties, environmental conditions, and extraction methods, including the type of solvent and procedures used.

In this work, GC-MS analysis of pumpkin seed oil identified various chemical constituents, with Linoleyl being the most abundant, acetate followed by Glycidyl (Z)-9nonadecenoate and E, E, Z-1,3,12-Nonadecatriene-5,14-diol. These findings differ from a study conducted by (Ikpa and Chidozie-Ikpa, 2024), where cis-Vaccenic acid was dominant compound, highlighting the influence of seed variety environmental factors on the chemical composition. Prior studies discussed that compounds such as linoleyl acetate and glycidyl esters are not typical natural constituents of edible oils but they can appear due to thermal degradation, transesterification, solvent or derivatization artifacts during GC-MS analysis (Cheng et al., 2017, Arisseto et al., 2018, Mat Shukri, 2023). Interestingly, the presence of squalene in this study aligns with prior findings emphasized its therapeutic which potential due to antioxidant and cholesterol-lowering properties (Alsalamah et al., 2025). Another study tocopherols, identified β-carotene, squalene, and polyphenolic compounds as the major bioactive compounds present in all pumpkin seed oil samples (Singh and Kumar, 2023). The use of hexane as the extraction solvent may have contributed to preserving a diverse range of bioactive compounds, as supported by (Can-Cauich et al., 2019), which noted the impact of extraction methods on the retention of bioactive molecules. These variations underscore

the importance of extraction techniques and regional factors in shaping the chemical profile of pumpkin seed oil.

In the current study, the GC-MS analysis of Methylated oil revealed the

of Methylated oil revealed dominance of unsaturated fatty acids, particularly 9,12-Octadecadien-1-ol (Z, Z)- and 6-Octadecenoic acid, methyl ester (Z)-, which aligns with previous studies that identified linoleic acid (C18:2, omega-6) as the most abundant fatty acid in pumpkin seed oil, accounting for over 50% of the total fatty acids (Hagos et al., 2023, Benalia et al., 2015). This supports the high prevalence of polyunsaturated fatty acids (PUFAs) in pumpkin seed oil, which are considered essential for human health. Moreover, the presence of Hexadecanoic acid, methyl ester, in this study agrees with its identification as a significant saturated fatty acid in other pumpkin seed oils, such as those from Algeria and Kenya, which reported palmitic acid as a major component (Benalia et al., 2015, Karanja et al., 2014). These variations in fatty acid composition can be attributed to differences in seed variety, geographic origin, and environmental further emphasizing the conditions. nutritional value of pumpkin seed oil as a rich source of essential fatty acids.

Antioxidant compounds safeguard cells from the harmful effects of reactive oxygen species (ROS) and recognized for their effectiveness in preventing various modern diseases, such as cancer and heart disease (Kulaitienė et al., 2018). In this study, DPPH and ABTS were used to assess the antioxidant potential of the extracted pumpkin seed oil. Both methods demonstrated a dose-dependent increase in scavenging activity, with IC₅₀ values of 88.88 µL and 73.78 µL, respectively, and these findings are consistent with (Boujemaa et al., 2020). Furthermore, the antioxidant properties of pumpkin seed oil have been demonstrated in a prior study where its administration was shown to mitigate the adverse effects of aflatoxin exposure. The biochemical parameters of the group treated with pumpkin seed oil were significantly improved, approaching those of the control group (Eraslan et al., 2013). Similarly, squalene has shown significant antioxidant properties. contributing to its protective effects against oxidative stress. While an earlier study (Warleta et al., 2010) found no evidence of activity against stable radicals such as DPPH and ABTS, more recent findings have highlighted its antioxidative potential. For instance, squalene exhibited 32% scavenging activity in the DPPH assay, significantly reduced ROS levels, and upregulated antioxidant genes such as sod and gpx4b, protecting zebrafish from oxidative damage (Zhang et al., 2023). These findings are supported by a study showing squalene's ability to reduce inflammatory markers like tnfa and cox2 while enhancing antioxidant defenses, making it a promising compound for combating oxidative stress (Ibrahim and Naina Mohamed, 2021).

Among the various bioactive compound identified in the pumpkin seed oil, squalene (3.16%) stands out as a particularly valuable compound due to its well- documented biological and therapeutic properties. While other compounds, such as Linoleyl acetate (32.12%) exhibits antioxidant activity (Ge et al., 2024) and Glycidyl (Z)-9-nonadecenoate (19.45%), was present in higher concentrations without a clear defined biochemical role, squalene's

multifunctionality and industrial relevance give it a distinct advantage. It is a potent antioxidant with cholesterollowering, anti-inflammatory, antimicrobial properties, making it especially relevant for cardiovascular health, immune support, and skin protection (Dasari et al., 2025). Additionally, its extensive applicationfrom pharmaceutical ranging cosmetics- highlights its importance as a bioactive compound worthy of further investigation, while other compounds, including E,E,Z-1,3,12-Nonadecatriene-5,14-diol and unsaturated fatty acids (such as 9,12-Octadecadien-1-ol and 6-Octadecenoic acid, methyl enhance the oil's overall nutritional and therapeutic potential, their narrower application scope and lesser scientific focus make squalene a more promising candidate for standalone studies (Siano et al., 2016).

To further reinforce the suitability of squalene for therapeutic applications, an ADMET analysis was conducted to evaluate its pharmacokinetics and safety profiles. The result confirmed that squalene complies with Lipinski's Rule of Five, indicating favorable druglikeness and oral bioavailability. Its moderate intestinal absorption (54.8%) is expectations consistent with lipophilic compounds and supports its formulations. potential for oral Furthermore, its inability to cross the blood-brain barrier (BBB) ensures a high level of safety for systematic therapies by eliminating risks of CNS toxicity. The absence of AMES toxicity and carcinogenic alerts further highlights its non-toxic nature, supporting its longterm safety for pharmaceutical and nutraceutical applications. These results with squalene's align established reputation as a safe and effective compound widely used as a vaccine adjuvants (Mendes et al., 2022).

Despite the findings of this study, pumpkin seed oil has not yet been widely applied or tested in broader experimental settings. However, identifying the chemical compounds present within the oil provides a foundation for future research. This could pave the way for studying the efficacy of individual compounds, such as squalene, which holds significant potential for various applications.

Limitations and Future Prospectives

The study did not include toxicity or safety assays for the oil or its major constituents. These analyses are essential for ensuring safe applications in food, pharmaceutical, and cosmetic industries. Further research should focus on detailed toxicity assessments and pharmacokinetic evaluations.

Additionally, while this study focused on the extraction and characterization of pumpkin seed oil, further investigations should prioritize bioactive components with well-defined roles and industrial relevance, such as squalene, to explore their individual properties and potential applications.

Conclusion

Pumpkin seed oil extracted from Cucurbita pepo cultivated in Egypt demonstrated a high yield and a rich composition of bioactive constituents, particularly linoleyl acetate, glycidyl (Z)-9-nonadecenoate, and squalene. The oil exhibited strong antioxidant potential, as evidenced by its dose-dependent scavenging and reducing radical activities in DPPH, ABTS, reducing power, and phosphomolybdate assays. Moreover, ADMET analysis of squalene indicated favorable pharmacokinetic

properties and safety profiles, supporting its potential use in nutraceutical and pharmaceutical formulations. Overall, the findings confirm that pumpkin seed oil is a valuable natural source of antioxidants with promising applications health-promoting products, medications, functional and foods. Future research should focus on isolating characterizing the individual bioactive constituents responsible for the antioxidant activity of pumpkin seed oil to better understand their mechanisms of action. In vitro and in vivo studies are recommended to validate the observed findings and assess the oil's safety, efficacy, and bioavailability in biological systems. Additionally, exploring the synergistic effects of pumpkin seed oil with other natural antioxidants could enhance its therapeutic potential.

Declarations

Acknowledgments

The authors of this study thank all members of the Faculty of Science, Tanta University.

Consent for publication

Not applicable

Availability of data and materials

All data generated or analysed during this study are included in this published article

Competing interests

The authors declare that they have no competing interests

Funding

Not applicable

References

ALSALAMAH, S. A., ALGHONAIM, M. I., MOHAMMAD, A. M., KHALEL, A. F., ALQAHTANI, F. S. & ABDELGHANY, T. M. 2025. Ozonemodified properties of pumpkin seed oil as anti-*H. pylori*, anticancer, antidiabetic, and anti-obesity agent. *Sci. Rep.*, 15, 25959.

AMIN, M. Z., ISLAM, T., MOSTOFA, F., UDDIN, M. J., RAHMAN, M. & SATTER, M. A. 2019. Comparative assessment of the physicochemical and biochemical properties of native and hybrid varieties of pumpkin seed and seed oil (*Cucurbita maxima Linn*). *Heliyon*, 5.

- ARISSETO, A. P., SILVA, W. C., TIVANELLO, R. G., SAMPAIO, K. A. & VICENTE, E. 2018. Recent advances in toxicity and analytical methods of monochloropropanediols and glycidyl fatty acid esters in foods. *Curr. Opin. Food Sci.*, 24: 36-42.
- AYOOLA, G., COKER, H., ADESEGUN, S., ADEPOJU-BELLO, A., OBAWEYA, K., EZENNIA, E. C. & ATANGBAYILA, T. 2008. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. *Trop. J. Pharm. Res.*, 7: 1019-1024.
- AZIZ, A., NOREEN, S., KHALID, W., EJAZ, A., FAIZ UL RASOOL, I., MAHAM, MUNIR, A., FARWA, JAVED, M. & ERCISLI, S. 2023. Pumpkin and pumpkin byproducts: phytochemical constitutes, food application and health benefits. *ACS Omega*, 8: 23346-23357.
- **BASHIR, K., JAN, K., HABIB, M. & JAN, S. 2025.** Health Benefits of Pumpkin Seeds. *Pumpkin Seed: Newer Perspectives.* Springer.
- BATOOL, M., RANJHA, M. M. A. N., ROOBAB, U., MANZOOR, M. F., FAROOQ, U., NADEEM, H. R., NADEEM, M., KANWAL, ABDELGAWAD, H. & AL JAOUNI, K. 2022. Nutritional value. phytochemical potential, and therapeutic benefits of pumpkin (Cucurbita sp.). Plants, 11: 1394.
- BENALIA, M., DJERIDANE, A., GOURINE, N., NIA, S., AJANDOUZ, E. & YOUSFI, M. 2015. Fatty acid profile, tocopherols content and antioxidant activity of Algerian pumpkin seeds oil (*Cucurbita pepo L*). *Mediterr. J. Nutr. Metab.*, 8: 9-25.

- BOUJEMAA, I., EL BERNOUSSI, S., HARHAR, H. & TABYAOUI, M. 2020. The influence of the species on the quality, chemical composition and antioxidant activity of pumpkin seed oil. *OCL*, 27: 40.
- **BWADE, K., ALIYU, B. & KWAJI, A. 2013.** Physicochemical properties of pumpkin seed oil relevant to bio-diesel production and other industrial applications. *Int. J. Eng. Bus. Enterp. Appl. (IJEBEA)*, 4: 72-78.
- CAN-CAUICH, C. A., SAURI-DUCH, E., MOO-HUCHIN, V. M., BETANCUR-ANCONA, D. & CUEVAS-GLORY, L. F. 2019. Effect of extraction method and species on the content of bioactive compounds and antioxidant activity of pumpkin oil from Yucatan, Mexico. Food Chem., 285: 186-193.
- CHARI, K. Y., POLU, P. R. & SHENOY, R. R. 2018. An appraisal of pumpkin seed extract in 1, 2- dimethylhydrazine induced colon cancer in Wistar rats. *J. Toxicol.*, 2018, 6086490.
- CHENG, W. W., LIU, G. Q., WANG, L. Q. & LIU, Z. S. 2017. Glycidyl fatty acid esters in refined edible oils: a review on formation, occurrence, analysis, and elimination methods. *Compr. Rev. Food Sci. Food Saf.*, 16: 263-281.
- DASARI, D., SINGHANIA, R. R., BHATIA, S. K., DONG, C. D. & PATEL, A. K. 2025. Squalene: A high- value compound for COVID- 19 vaccine adjuvants and beyond pathways, production strategies, and market potential. *IUBMB Life*, 77: e70032.
- **ERASLAN, G., KANBUR, M., ASLAN, Ö.**& KARABACAK, M. 2013. The antioxidant effects of pumpkin seed oil on subacute aflatoxin poisoning in mice. *Environ. Toxicol.*, 28: 681-688.
- GE, P., XIE, H., GUO, Y., JIN, H., CHEN, L., CHEN, Z. & LIU, Y. 2024.

 Linoleyl acetate and mandenol alleviate HUA- induced ED via NLRP3 inflammasome and JAK2/STAT3

- signalling conduction in rats. *J. Cell. Mol. Med.*, 28: e70075.
- HAGOS, M., YAYA, E. E., CHANDRAVANSHI, B. S. & REDIABSHIRO, M. 2023. Determination of fatty acids composition by GC-MS and physicochemical parameters of pumpkin (*Cucurbita maxima*) seed oil cultivated in Ethiopia. *Bull. Chem. Soc. Ethiop.*, 37: 565-577.
- HLATSHWAYO, S., THEMBANE, N., KRISHNA, S. B. N., GQALENI, N. & NGCOBO, M. 2025. Extraction and processing of bioactive phytoconstituents from widely used South African medicinal plants for the preparation of effective traditional herbal medicine products: a narrative review. *Plants*, 14: 206.
- HU, T., ZHOU, L., KONG, F., WANG, S., HONG, K., LEI, F. & HE, D. 2023. Effects of extraction strategies on yield, physicochemical and antioxidant properties of pumpkin seed oil. *Foods*, 12: 3351.
- **HU, Z., HU, C., LI, Y., JIANG, Q., LI, Q.** & FANG, C. 2024. Pumpkin seed oil: a comprehensive review of extraction methods, nutritional constituents, and health benefits. *J. Sci. Food Agric.*, 104: 572-582.
- **IBRAHIM, N. I. & NAINA MOHAMED, I. 2021.** Interdependence of antiinflammatory and antioxidant
 properties of squalene–implication for
 cardiovascular health. *Life*, 11: 103.
- **IKPA, C. B. & CHIDOZIE-IKPA, N. N. 2024.** Molecular docking of phytochemical compounds in *Cucurbita maxima* with anti-prostate cancer activity. *J. Mol. Chem.*, 4: 685-685.
- KARANJA, J. K., MUGENDI, B. J., KHAMIS, F. M. & MUCHUGI, A. N. 2014. Determination of fatty acid and tocopherol contents of the oils of various pumpkin cultivars (*Cucurbita spp.*) seeds.
- KHAN, R. A., KHAN, M. R., SAHREEN, S. & AHMED, M. 2012. Assessment of flavonoids contents and in vitro

antioxidant activity of *Launaea* procumbens. Chem. Cent. J., 6: 43.

- KUKEERA, T., BANADDA, N., TUMUTEGYEREIZE, P., KIGGUNDU, N. & ASUMAN, R. 2015. Extraction, quantification and characterization of oil from pumpkin seeds. *Int. J. Agric. Biol. Eng.*, 8: 98-102.
- KULAITIENĖ, J., ČERNIAUSKIENĖ, J., JARIENĖ, E., DANILČENKO, H. & LEVICKIENĖ, D. 2018. Antioxidant activity and other quality parameters of cold pressing pumpkin seed oil. *Not. Bot. Horti Agrobot. Cluj-Napoca*, 46: 161-166.
- **MAT** SHUKRI, N. S. S., **NUR** SYAFIQAH, ISHAK, **SITI** MUNIRAH, **MOHAMAD** ZAIN, NADHIRAH, MISKAM, NUR MAZIDATULAKMAM, ABDULLAH, WAN NAZWANIE, KAMARUZAMAN, SAZLINDA, **MOHAMAD** HANAPI, **NOR** SUHAILA. WAN IBRAHIM. WAN NAZIHAH, RAOOV, **MUGGUNDHA** & YAHAYA, NOORFATIMAH. 2023. Glycidyl Esters: An updated mini-review of analytical methods (2015-2022).Malays. J. Anal. Sci., 27: 1126-1146.
- MENDES, A., AZEVEDO-SILVA, J. & FERNANDES, J. C. 2022. From sharks to yeasts: Squalene in the development of vaccine adjuvants. *Pharmaceuticals*, 15: 265.
- MOLYNEUX, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. *Songklanakarin J. Sci. Technol.*, 26: 211-219.
- RE, R., PELLEGRINI, N., PROTEGGENTE, A., PANNALA, A., YANG, M. & RICE-EVANS, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26: 1231-1237.
- REZK, D. M., MOSTAFA, A. A., HAMZ, M. & SUKAR, N. A. 2022. Floral

structural characteristics of some economic cucurbits in Egypt. *J. Plant Prod.*, 13: 683-690.

- **ROSALES, R. J., PHOTCHANACHAI, S.** & KHANOBDEE, C. 2025. Early or late harvesting of pumpkins: A study on its effect on seed and flesh production. *Egypt. J. Hortic.*, 52: 77-84.
- ŠAMEC, D., LOIZZO, M. R., GORTZI, O., ÇANKAYA, İ. T., TUNDIS, R., SUNTAR, İ., SHIROOIE, S., ZENGIN, G., DEVKOTA, H. P. & REBOREDO- RODRÍGUEZ, P. 2022. The potential of pumpkin seed oil as a functional food—A comprehensive review of chemical composition, health benefits, and safety. *Compr. Rev. Food Sci. Food Saf.*, 21: 4422-4446.
- SHEHATA, W., IQBAL, Z., ABDELBASET, T., SAKER, K., EL SHORBAGY, A., SOLIMAN, A., SATTAR, M. & EL-GANAINY, S. 2023. Identification of a cucumber mosaic virus from *Cucurbita pepo* on new reclamation land in Egypt and the changes induced in pumpkin plants. *Sustainability*, 15 (12): 9751.
- SIANO, F., STRACCIA, M. C., PAOLUCCI, M., FASULO, G., BOSCAINO, F. & VOLPE, M. G. 2016. Physico- chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. *J. Sci. Food Agric.*, 96: 1730-1735.
- **SINGH, A. & KUMAR, V. 2023.** Phytochemical and bioactive compounds of pumpkin seed oil as affected by different extraction methods. *Food Chem. Adv.*, 2: 100211.
- UBA, B. A. M. 2019. Determination of fatty acid composition and physicochemical properties of *Cucurbita maxima* (pumpkin) seed oil cultivated in northeast Nigeria. *East Afr. Scholars Multidiscip. Bull.*, 2: 231-234.
- VILLAMIL, R.-A., ESCOBAR, N., ROMERO, L. N., HUESA, R., PLAZAS, A. V., GUTIÉRREZ, C. & ROBELTO, G. E. 2023. Perspectives of pumpkin pulp and pumpkin shell and seeds uses as ingredients in food

formulation. *Nutr. Food Sci.*, 53: 459-473.

WARLETA, F., CAMPOS, M., SÁNCHEZ-ALLOUCHE, Y., QUESADA, C., RUIZ-MORA, J., BELTRÁN, G. & GAFORIO, J. J. 2010. Squalene protects against oxidative DNA damage in MCF10A human mammary epithelial cells but not in MCF7 and MDA-MB-231 human breast cancer cells. Food Chem. Toxicol., 48: 1092-1100.

YUSUF, J., KANTOMA, D. & MOSUNMOLA, R. O. 2021. Studies on *Cucurbita maxima* seed oil for its potentials as feedstock for biodiesel production in Nigeria. *NRJCS*, 9: 215-233.

ZHANG, P., LIU, N., XUE, M., ZHANG, M., XIAO, Z., XU, C., FAN, Y., LIU, W., QIU, J. & ZHANG, Q. 2023. Anti-inflammatory and antioxidant properties of squalene in copper sulfate-induced inflammation in zebrafish (*Danio rerio*). *Int. J. Mol. Sci.*, 24: 8518.

تحضير وتحليل زيت بذور اليقطين المزروعة في مصر: النشاط المضاد للأكسدة والمكونات الرئيسية باستخدام التحليل المحسود وتحليل ADMET للسكواليين

علا محمود يحيى 1^* ، عبير عبد الحميد خميس 1^* ، السيد إبراهيم سالم 2^* ، ماريان نبيل جرجس

1 شعبة الكيمياء الحيوية، قسم الكيمياء، كلية العلوم، جامعة طنطا، طنطا، مصر

2 قسم علم الحيوان، كلية العلوم، جامعة طنطا، طنطا، مصر.

يمتلك زيت بذور اليقطين المستخرج من بذور نبات المركبات النشطة بيولوجيًا. هدفت هذه الدراسة إلى تقييم وعلاجية كبيرة نظرًا لاحتوائه على مجموعة غنية من المركبات النشطة بيولوجيًا. هدفت هذه الدراسة إلى تقييم التركيب الكيميائي والنشاط المضاد للأكسدة للزيت لدعم تطبيقاته في مجالات الصحة والصناعة. باستخدام طريقة الاستخلاص بجهاز سوكسليت، تم الحصول على نسبة عائد بلغت 38.15% (وزن/وزن). كشف تحليل الكروماتوغرافيا الغازية مطياف الكتلة (GC-MS) عن وجود مكونات رئيسية مثل أسيتات اللينوليل (32.12%)، على عليسيديل-و-(Z) نوناديكينوات (44.95%)، وسكواليين (31.6%). كما أظهر تحليل الزيت الميثيلي وجود أحماض دهنية غير مشبعة، بما في ذلك 21،9-أوكتاديكايدين-1-أول (46.17%) و6-أوكتاديكينويك أسيد (DPPH) أظهرت اختبارات النشاط المضاد للأكسدة، والتي شملت اختباري 2،2-ثنائي فينيل-1-بيكريل هيدرازيل (DPPH) وطريقة الفسفومولييدات، قدرة قوية على إزالة الجذور الحرة وزيادة النشاط الاختزالي بطريقة تعتمد على الجرعة. وطريقة الفسفومولييدات، قدرة قوية على إزالة الجذور الحرة وزيادة النشاط الاختزالي بطريقة تعتمد على الجرعة. وجود إشارات السمية أو التسرطن، وامتصاص معتدل في الأمعاء. تسلط هذه النتائج الضوء على الإمكانات المضادة للأكسدة والعلاجية لزيت بذور اليقطين، مما يعزز ملاءمته لتطبيقات الأغذية الوظيفية، والصناعات المضادة للأكسدة والعلاجية لزيت بذور اليقطين، مما يعزز ملاءمته لتطبيقات الأغذية الوظيفية، والصناعات الاستخدامات محددة.