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KEY WORDS ABSTRACT

Land This study investigates the effects of land use and seasonal

variation on soil properties and macrofauna communities in
reclaimed agricultural land of Gharbia Governorate, Egypt. A
Soil health, comparative analysis across cultivated, reclaimed, and degraded
sites was conducted to assess physicochemical parameters (organic

reclamation,

Seasonal e _ _ _
d . matter, pH, salinity, macro- and micronutrients) and soil
ynamics, macrofauna over four seasons. Reclaimed soils exhibited the
Soil macrofauna, highest organic matter and carbon content, particularly in spring,
Nutrient cycling, indicating the effectiveness of restoration practices. Degraded soils

showed the lowest nutrient levels and faunal diversity, while
Ecosystem

cultivated soils showed intermediate conditions with higher faunal
recovery density but lower diversity. Seasonal dynamics significantly
influenced soil properties, with autumn and spring being the most
favourable for biological activity. Canonical Correspondence
Analysis (CCA) revealed strong correlations between soil fauna
and environmental factors such as moisture, organic matter, and
nutrient availability. The study concludes that sustainable land
management should incorporate seasonal variability and site-
specific strategies to enhance soil health, nutrient cycling, and
biodiversity. Although reclamation practices significantly promote
ecosystem recovery, long-term monitoring and adaptive
management remain essential for sustaining soil resilience in
Egyptian agroecosystems.



mailto:mohamed.ageba@science.tanta.edu.eg

160

Introduction

Soil is one of the most vital natural
resources supporting life on earth. It
forms the foundation for plant growth,
which in turn provides food for humans
and animals. However, in many regions
across the globe, soil is facing increasing
degradation due to both natural processes
and human activities. This degradation
results in reduced fertility, loss of
biodiversity, erosion of topsoil, and
ultimately poses serious threats to food
security and environmental sustainability
(FAO, 2020). However, in the
Anthropocene, unprecedented levels of
soil degradation have emerged. Current
estimates indicate that 33-50% of global
soils are moderately to severely degraded
(FAO, 2022). This degradation manifests

through: (1) Physical degradation,
including compaction and erosion,
affecting over 1.5 billion hectares

worldwide (Borrelli et al., 2020); (2)
Chemical degradation, through
salinization, acidification, and pollution,
with approximately 22% of agricultural
lands showing reduced productivity due
to chemical imbalances (Rengasamy,
2010); and (3) Biological degradation,
marked by 40-60% declines in soil
organic carbon and microbial biomass in
intensively managed systems (Tsiafouli
et al., 2015).

Different land uses, such as forests,
grasslands, croplands, and degraded lands,
create distinct soil environments that
affect soil fauna. Natural forests and
undisturbed grasslands typically support
higher abundance and diversity of soil
fauna due to greater organic matter, stable
moisture, and less disturbance. In contrast,
agricultural and degraded lands often
show reduced faunal diversity and altered
community structure, primarily due to
lower organic carbon, nutrient depletion,
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and physical disturbance from tillage or
grazing. For example, conversion from
forest to agriculture reduces soil
microbial biomass and faunal abundance,
while irrigated agriculture in semiarid
regions can increase soil fauna by
providing continuous water availability
and altering community structure
(Agbeshie et al., 2020; Singh et al.,
2020; Da Silva Santana et al., 2021; Liu
et al., 2024; Ligrone et al., 2024; Galli
et al., 2025).

Key soil properties, such as organic
carbon, nitrogen, phosphorus, pH, texture,
and moisture, directly impact soil fauna.
Higher organic matter and nutrient
content support greater abundance and
diversity, while soil pH and texture can
select for specific faunal groups. For
instance, soil pH is positively correlated
with fauna density in acidic soils but
negatively in alkaline soils. Soil texture
(e.g., clay content) can restrict mobility
and habitat availability for some taxa.
(Kudureti et al., 2023; Lee et al., 2020;
Heydari et al., 2020; Galli et al., 2025).
Changes in these properties, driven by
both land use and seasonal dynamics,
alter the structure and function of soil
faunal communities (Hermans et al.,
2020; Heydari et al, 2020;
Rakotonindrinaet al., 2025; Galli et al.,
2025).

Seasonal changes, such as shifts between
wet and dry periods, affect soil moisture,
temperature, nutrient availability, and pH,
all of which influence soil fauna (Fu et al.,
2020; Da Silva Santana et al., 2021,
Solanki et al., 2024). Wet seasons
generally increase soil moisture and
organic matter decomposition, supporting
higher faunal abundance and activity.
Conversely, dry seasons can reduce soil
porosity and water holding capacity,
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leading to lower faunal populations and
shifts in  community composition.
Seasonal variation also modulates the
effects of land use, with differences in
faunal ~ communities  often  more
pronounced during wetter periods (Wang
etal., 2022, Wu et al., 2023; Ligrone et
al., 2024).

Soil microarthropods, including groups
such as Collembola and Acari, are
integral to the functioning of agricultural
ecosystems, contributing to nutrient
cycling, organic matter decomposition,
and pest suppression. Their diversity and
abundance are closely linked to soil
health, as these organisms respond
sensitively to changes in soil structure,
moisture,  organic  content,  and
management  practices (Neher &
Barbercheck, 2019; Menta & Remelli,
2020; Galli et al., 2025). Agricultural
intensification, characterized by frequent
tillage, monoculture, and high-input
farming, often leads to a simplification of
soil habitats, resulting in reduced
microarthropod diversity and altered
community composition (Joimel et al.,
2017; Galli et al., 2025; Toéth et al.,
2025).

The use of soil microarthropods as
bioindicators has gained prominence due
to their ability to reflect the biological
quality of soils. Indices such as the QBS-
ar (Biological Soil Quality Index)
leverage the richness and eco-
morphological traits of microarthropod
communities to assess soil health, with
higher index values indicating more
diverse and resilient communities
adapted to stable soil environments
(Menta & Remelli, 2020; Galli et al.,
2025; Gallese et al., 2025). These indices
are effective for monitoring the impacts
of different land uses and management
regimes, providing a holistic measure that
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integrates  physical, chemical, and
biological soil properties (Toth et al.,
2025; Gallese et al., 2025; Mantoni et
al., 2021).

Land degradation, driven by intensive
agriculture, soil compaction, and loss of
organic matter, negatively affects soil
fauna by reducing habitat quality and
resource availability. This leads to
declines in microarthropod abundance
and diversity, which in turn can impair
essential ecosystem services such as
decomposition and nutrient cycling
(Joimel et al., 2017; Van Eekeren et al.,
2022; Toth et al.,, 2025). Conversely,
sustainable practices like organic farming,
reduced tillage, and land protection have
been shown to support higher
microarthropod diversity and improve
soil biological quality (Coletta et al.,
2025; Mantoni et al., 2021; Meyer et al.,
2021).

Construction and demolition activities on
agricultural lands significantly disrupt
soil fauna and soil microarthropods,
impacting the ecological balance and soil
health. These activities often lead to soil
compaction, habitat destruction, and
contamination with debris and pollutants,
which directly reduce the abundance and
diversity of soil fauna such as
microarthropods.

Agricultural  reclamation  transforms
degraded or abandoned lands into
productive  ecosystems, offering a

powerful approach to restore soil fertility
and ecological function. Through
interventions such as soil reconstruction,
vegetation restoration, and targeted
fertilization, reclamation enhances soil
physicochemical properties, boosting
organic carbon, nitrogen, and microbial
biomass, while reducing salinity and
compaction.  These  improvements
accelerate soil maturation and nutrient
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cycling, supporting the reestablishment
of productive landscapes and sustainable
land use (Wang et al., 2016; Feng et al.,
2019; Qi et al., 2020; Mao et al., 2024;
Tang et al., 2025). A critical, yet often
underappreciated, aspect of reclamation
is its influence on soil fauna—organisms
such as nematodes, earthworms, and
microarthropods that drive
decomposition, nutrient cycling, and soil
structure formation. Studies show that
comprehensive reclamation programs
incorporating organic amendments (e.g.,
10-20 tons/ha of compost) can increase
soil organic matter by 35-150% within 3—
5 vyears. Similarly, targeted mineral
supplementation can correct nutrient
deficiencies by 40-90% (FAO, 2021).
Yet fertility restoration often follows
nonlinear trajectories; severely degraded
soils may require 5-15 years to regain
80% of native fertility (USDA, 2022).
Although reclamation may not fully
restore pre-degradation conditions, well-
managed programs typically recover 60—
90% of optimal agricultural productivity,
making it an essential tool for sustainable
land management (IPBES, 2020; IPBES
2023).

This study examines how land use and
seasonal  variation influence  soil
properties and macrofauna community
structure in reclaimed agricultural lands
of Gharbia Governorate, Egypt. The
specific objectives are: (1) to compare
soil characteristics and macrofaunal
diversity among cultivated, reclaimed,
and degraded sites across different
seasons; and (2) to identify the key
environmental drivers shaping
community composition and evaluate soil
and macrofaunal indicators of ecosystem
recovery. It is hypothesized that
reclaimed  soils, Dbenefiting from
improved management practices and
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organic inputs, will exhibit enhanced soil
quality and greater macrofaunal diversity.
Materials and Methods

Study Site

The present study was conducted in
Gharbia Governorate, Egypt, within the
Nile Delta region, between Tanta City
and Kafr El-Hima Village,
Geographically, the study area is situated
between latitudes 30°45'-30°52" N and
longitudes 30°55'-31°05' E. Tanta City is
located at coordinates 30°47'00” N,
31°00'30"” E, while Kafr El-Hima Village
lies at 30°48'30” N, 31°01'45" E. Fig. (1)

Fig. (1): Map of the study sites in Tanta City
and Kafr El-Hima Village Gharbia
Governorate, Egypt.

Sampling was conducted across four
distinct seasons from November 2022 to
August 2023. Soil samples were collected
during each season, with the
corresponding ambient temperatures
recorded as follows: autumn (November
2022) ranged from 17°C (min) to 26°C
(max), winter (February,2023) 12°C
(min) / 23°C (max), spring (May 2023)
from 16°C (min) / 25°C (max), and
summer (August 2023) 23°C (min) /
32°C (max). At each sampling location,
three land-use types were selected for
comparison: (1) cultivated agricultural
soils, supporting seasonally rotated crops
such as corn (Zea mays) in summer, and
wheat (Triticum aestivum) in winter; (2)
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degraded soils, which had been left
fallow and repurposed for construction
activities; and (3) reclaimed soils, which
were  previously cultivated, later
abandoned for construction purposes, and
subsequently rehabilitated for
agricultural use with seasonal crops.
From each land-use type, five random
soil samples were collected using a
cylindrical metal core (10 x 10 cm) to a
depth of 10 cm. The samples were
transported to the laboratory and
processed using a Berlese-Tullgren
funnel apparatus under gentle heat and
light exposure for 5-7 days to extract soil
fauna. Organisms were collected from the
funnel base, preserved and fixed in 70%
ethanol, and then cleared using lactic acid
for taxonomic identification.
Identification of soil oribatid mites to
species level was conducted under a
compound microscope, following the
taxonomic keys and protocols provided
by Balogh (1972); Al-Assiuty and
Khalil (1991); Balogh and Balogh
(1992).

Physicochemical analyses

Physical and chemical analyses included
measurements of temperature, moisture
(oven-drying at 105°C), organic matter
(loss-on-ignition at 550°C), pH (1:5 soil-
water suspension), electrical conductivity
(1:2.5 extract), The analytical methods for
soil properties, including elemental
composition (Ca, Mg, K via AAS; N via
Kjeldahl method; P via NaHCOs
extractable colourimetry. All procedures
followed standard guidelines outlined in
Page et al. (1982), Sparks et al. (1996)
and Bashour and Sayegh, (2007)
Statistical analysis

All data were expressed as mean =
standard deviation (SD). Statistical
analyses were performed using SPSS
version 27, Minitab version 21, Microsoft
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Office 365 and GraphPad Prism version
8.3 for data processing and visualization.
General Linear Models (GLM) and two-
way ANOVA were applied to evaluate the
effects of land-use type and seasonal
variation on soil parameters. Tukey’s
Honest Significant Difference (HSD)
post-hoc test (p < 0.05) was used for
pairwise comparisons. Ecological
diversity indices, including Shannon—
Wiener diversity, Simpson dominance,
and Pielou’s evenness, were computed
using PAST software (Hammer et al.,
2001). Canonical Correspondence
Analysis (CCA) was conducted to
examine relationships between
macrofaunal community composition and
environmental  variables (e.g., soil
moisture, organic matter, pH, and nutrient
availability) following the approach of Ter
Braak (1986); Hammer et al., (2001).
Ethical clearance

Ethical clearance was obtained from the
Ethics Committee of the Faculty of
Science Tanta University (License Code:
IACUC-SCI-TU-04268).

Result

The data analysis revealed significant
variations in soil properties and
biological communities across the three
land-use types; cultivated (CUL),
reclaimed (REC), and degraded (DEG),
with pronounced seasonal dynamics.

Soil Physicochemical Properties

The foundational soil properties of
organic matter, moisture, pH, and salinity
exhibited distinct patterns driven by both
land-use and season Table (1) and Fig. (2).
Soil moisture content varied significantly
between sites and seasons, with reclaimed
and cultivated sites generally retaining
higher moisture than degraded sites,
especially after irrigation or rainfall
events Table (1), Fig. (2a). Soil organic
matter (OM) was highly significantly
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influenced by site type (p < 0.001),
season (p < 0.001), and their interaction
(p <0.001). Reclaimed soils exhibited the
highest OM content, peaking in spring
(3.96 £ 0.4%), while degraded soils
consistently had the lowest levels,
particularly in summer and spring (1.55 +
0.14% and 1.63 = 0.18%, respectively).
Cultivated soils maintained intermediate
OM levels Table (1), Fig. (2b). Soil
salinity, measured by total dissolved salts
(TDS), showed dramatic fluctuations.
Reclaimed sites experienced extreme salt
accumulation in summer (845.6 + 80.43
ppm), whereas degraded soils showed a
distinct winter peak (366.6 + 74.23 ppm).
Cultivated soils maintained relatively
stable, low TDS levels (119-167.4 ppm)
throughout the year. A two-way ANOVA
confirmed highly significant effects of
land-use, season, and their interaction (all
p < 0.001) Table (1) and Fig. (2c).

Soil pH was primarily affected by land-
use type (p < 0.006). Cultivated soils
were consistently the most alkaline
(peaking at pH 8.26 £+ 0.36 in autumn),
while reclaimed sites were the least
alkaline (lowest at pH 7.24 = 0.36 in

spring). Degraded lands exhibited
intermediate, stable pH levels (Fig 2d)

Macronutrient Dynamics

Carbon (C), nitrogen (N), phosphorus (P),
and potassium (K) cycles displayed
distinct and often decoupled patterns
Table (2). Soil carbon content was highly
significantly different among sites (p <
0.001) and seasons (p < 0.001).
Reclaimed soils had the highest C levels
in spring (2.3 = 0.23%), followed by
cultivated soils in autumn (2.04 £ 0.2%).
Degraded soils consistently had the
lowest C content (e.g., 0.9 £ 0.08% in
summer). In contrast to carbon, nitrogen
levels did not show significant main
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effects for site or season alone, but a
significant interaction was found (p <
0.012). Degraded soils had the highest N
in autumn (0.92 £ 0.12%), likely due to
reduced plant uptake, while cultivated
soils peaked in spring (0.92 = 0.07%)
aligning with fertilization.

Phosphorus availability was strongly
seasonal (p < 0.001). Degraded soils
showed the highest available P in autumn
(13.74 £ 2.06 mg/kg), whereas reclaimed
soils exhibited low availability in winter
(2.01 = 0.28 mg/kg) but higher levels in
spring and summer, indicating effective
reclamation processes during growing
seasons Table (2).

Potassium  dynamics revealed that
degraded soils consistently had the
highest available K, particularly in
autumn (1564.44 + 187.73 mg/kg).
Cultivated soils maintained intermediate
levels, while reclaimed soils had the
lowest available K, all sites showed a
seasonal decline in available K during
spring and summer due to increased plant
uptake Table (2).

Secondary cation dynamics

Sodium (Na), magnesium (Mg), and
calcium (Ca) exhibited contrasting
mobilities. Reclaimed soils consistently
showed the highest Na accumulation,
peaking in summer (860 + 103.2 mg/kg),
indicating a potential risk from irrigation
practices. Magnesium levels showed
extreme  seasonal  fluctuations in
reclaimed soils, ranging from 1500 mg/kg
in autumn to 4800 mg/kg in winter Table
(2). In contrast, calcium distribution was
remarkably stable across seasons and
sites, suggesting a strong buffering
capacity in these soil systems Table (2).
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Table (1): Soil properties of organic matter, moisture, Salinity and pH, across land-use types and
seasons. Data expressed as (Mean + SD)

Soil Site 2 Way ANOVA
parameters Season Cultivated Reclaimed Degraded Source p-value
SM autumn  25.4 + 3.35%P 21.62 +2.562P¢ 17.43 £ 6.57%%¢ Type <0.001
% winter 27.76 £ 2.662 24.62 +3.332P  18.77 + 4.55P%%4¢ Season <0.001
spring 20.52 £ 4.33%¢4  16.89 £ 5.47%%¢ 14,31 + 1.55%" Type x Season 0.36 n.s.
summer 19.70 +4.32°¢d 11,78 + 1.245F  9.80 + 3.45
oM autumn  3.51 + 0.35%P 3.28 + 0.36%" 2.91 +0.230¢ Type <0.001
% winter 2.19+0.18¢¢ 2.95 + 0.35°¢ 2.32 +0.37¢%¢ Season <0.001
spring 2.85 +0.43°¢ 3.96 £0.42 1.63 +0.18¢ Type x Season < 0-001
summer  3.05 + 0.250¢ 2.94 +0.26°¢ 1.55 +0.14¢
Salinity autumn 167.4%14.03' 260.8+22.15° 119+40.97%  Type <0.001
ppMm  winter ~ 123.4+14.36° 146.25+18.39¢ 366.6 + 74.23°  Season <0.001
spring 131.4+ 1477 168.53+22.17¢ 100.8+32.9%  Type x Season < 0.001
summer 161.4+21.979 8456 +80.43% 152.6 + 32.25¢
pH autumn  8.26 £ 0.362 7.38 £ 0.510¢ 7.74 £0.1120¢  Type =0.006
winter  7.96+0.27%  7.74+0.24%P¢ 7.7 +0.16*°°  Season =0.18
spring 7.78 £ 0.3%b¢ 7.24 + 0.36° 7.7 £0.16%b¢ Type x Season = 0.004
summer 7.6 +0.072b¢ 7.92 +0.58%0¢ 7,62 +0.19%b¢

p-value < 0.05 is considered significant. p-value < 0.001 is considered highly significant. Means that do
not share the same subscript small letter (a,b,c,... etc) are significantly different (Tukey's test, p < 0.05).
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Fig. (2): Seasonal dynamics of core soil properties. (A) Organic Matter (OM%), (B) Soil Moisture
(SM%), (C) pH, and (D) (Salinity, ppm) in cultivated (CULT), reclaimed (REC), and degraded
(DEG) sites across four seasons
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Table (2):

Seasonal

dynamics of macronutrient availability carbon (C%),
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Nitrogen

(N%),Available Phosphorus (mg/kg), and Available Potassium (mg/kg) in cultivated (CULT),
reclaimed (REC), and degraded (DEG) sites. Data expressed as (Mean + SD)

Soil Season Site 2 Way ANOVA
parameters Cultivated Reclaimed Degraded Source p-value
C%  autumn 2.04 +0.28b 1.9 £0.212P 1.69 +0.14>¢  Type <0.001
winter 1.27 £ 0.1°%¢ 1.71 £ 0.21b¢ 1.35+0.22¢¢  Season <0.001
spring 1.65 + 0.25b¢ 2.3+0.232 0.95+0.1%  Type x Season < 0.001
summer  1.77 +0.14°¢ 1.71 £ 0.15b¢ 0.9 +0.08¢
N%  autumn  0.68 +0.092P 0.76 £ 0.12° 0.92+0.12°  Type =0.461
winter 0.81 + 0.092P 0.78 + 0.092° 0.77 £0.08*°  Season =267
spring 0.92 +£0.072 0.69 + 0.082P 0.78 £ 0.06"  Type x Season < 0.012
summer  0.62 +0.08° 0.79 £ 0.172P 0.73 £ 0.092P
Pai  autumn 9.23+1.2° 9.81+1.28° 13.74 £2.06* Type <0.001
mg/kg  winter 5.05 + 0.56%4 2.01£0.28° 4.8 +0.43%4¢  Season <0.001
spring 2.57 £ 0.214¢ 10.14 +1.12° 5.45+0.71¢4  Type x Season < 0.001
summer  7.45+0.820¢ 9.65 +0.97° 7.66 +0.61°¢
Kai autumn  996.6 + 129.56" 613.13 + 67.44° 1564.44 + 187.73% Type =0.006
mg/kg  winter  968.52 + 106.54" 697.08 + 90.62°¢ 1357.09 + 149.28* Season =0.18
spring  793.49 + 71.41b¢ 752,68 +90.32°¢  586.09 + 58.61°¢ Type x Season = 0.004
summer 704.24 +105.64°¢ 612.8 + 73.54° 883.81 + 106.06"°
Na  autumn 360 *+ 46.8° 660 + 79.20¢ 440 £ 44%  Type <0.001
mg/kg  winter 560 + 50.4bcd 660 + 92.40¢ 500 + 40%%¢  Season =0.016
spring 390 + 399 740 + 81.42b 460 +50.6%¢  Type x Season = 0.004
summer 410 + 49.2%¢ 860 + 103.22 470 + 37.6%¢
Ca  autumn 7300 + 9492P 6900 + 8282P 6700 + 737 Type =0.01
mg/kg  winter 7700 + 61620 5700 + 798" 7000 + 1050%P  Season =0.830
spring 6900 + 11042P 6600 + 7262P 7500 + 8252 Type x Season = 0.147
summer 7100 # 8522P 6100 + 6102P 8300 + 7472
Mg  autumn 1900 + 247%¢ 1500 + 1508 2900 + 232°¢  Type <0.001
mg/kg  winter 2600 + 208°¢ 4800 + 5762 3000 + 480°¢  Season <0.001
spring 2400 + 384%4¢ 2400 + 264°%¢ 3100 + 341°¢  Type x Season < 0.001
summer 2800 + 336Pcd 3700 + 370P 800 + 72f

p-value < 0.05 is considered highly significant. Means that do not share the same letter are

significantly different (Tukey's test, p < 0.05)

Composition and diversity of soil fauna

The abundance and diversity of soil fauna
varied substantially among land-use types
and seasons (Tables 3 and 4). Across all
sites, ten species were identified within
seven families, dominated by Oribatid
mites and Collembola.

In autumn, cultivated soils showed the
highest total abundance (139 individuals)

compared to degraded ones (38
individuals). Dominant taxa included
Scheloribates  laevigatus and S.
confundatus (D5) in cultivated and
reclaimed soils. Diversity indices were
high (H' = 2.07-2.15; 1-D = 0.85-0.87),
with evenness (E = 0.9) indicating
balanced communities.

During winter, total abundance increased

markedly in cultivated (272 individuals)
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and degraded (187 individuals) soils.
Lohmannia hispaniola and S. laevigatus
were dominant  species.  Shannon
diversity declined (H' = 1.52-1.87) due to
stronger species dominance and reduced
evenness.

In spring, S. confundatus and Collembola
dominated cultivated and reclaimed soils,
whereas degraded soils showed reduced
abundance (29 individuals). Diversity
ranged between H' = 1.40 -1.94, with
evenness 0.81- 0.93.

By summer, total abundance declined
markedly (50 individuals in degraded
soils), though S. confundatus remained
dominant across all sites. Diversity
indices (H' = 1.50 —1.91) reflected the
seasonal decline in fauna activity and
microhabitat availability.

Overall, cultivated soils supported the
most diverse and abundant communities
across all seasons, while degraded soils

exhibited simplified assemblages
dominated by few tolerant taxa.
CCA analysis:

The Canonical Correspondence Analysis
(CCA) revealed clear seasonal shifts in
the relationships between soil fauna
assemblages, land-use types, and
environmental variables. In autumn, soil
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fauna  communities were  mainly
structured by organic matter and moisture,
showing post-drought recovery in
cultivated and reclaimed soils. During
winter, moisture and nitrogen were the
dominant drivers, supporting higher
faunal abundance in cultivated soils,
while reclaimed and degraded soils were
influenced by salinity and sodium
accumulation. In spring, organic matter,
carbon, and nutrient availability governed
community structure, producing the
greatest differentiation among land-use
types and the highest biodiversity. By
summer, desiccation and salinity stress
became the main controlling factors,
resulting in reduced abundance and
simplified communities dominated by
xerophilic taxa.

Overall, the CCA indicates a seasonal
ecological gradient where moisture and
nutrient availability drive faunal diversity
in cooler, wetter seasons, while salinity
and drought stress constrain communities
during hot, dry periods. This
demonstrates  that  both  land-use
management and seasonal climate jointly
regulate soil fauna distribution and
ecosystem functioning.
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Table (3): Abundance and relative contribution (%) of soil fauna in all studied sites in autumn
and winter

Autumn Winter
Species Abundance (R.C.%) D Abundance (R.C.%) D
Cultivated Reclaimed Degraded Cultivated Reclaimed Degraded

Family Oribatulidae

Scheloribates laevigatus 31 (22.3%) D5 11 (17.2%) D5 5 (13.2%) D5 91 (33.5%) D5 8 (5.8%) D4 47 (25.1%) D5
Scheloribates
confundatus 12 (8.6%) D4 10 (15.6%) D5 - 1(04%)D1  1(0.7%)D1 2 (1.1%) D2

Family Haplozetidae

Xylobates capucinus 5(3.6%) D3 11 (17.2%) D5 10 (26.3%) D5 1(04%)D1 5(3.6%)D3 19 (10.2%) D5
Family Oribatellidae

Lamellobates h. - -

egyptica . 8(125%) D5 1 (2.6%) D3 -
Family Oppiidae

Oppia trifurcata 10 (7.2%) D4 4 (6.3%)D4 4(105%)D5 3(1.1%)D2 8 (5.8%) D4 .

Oppia variance 1(0.7%)D1 1(1.6%)D2 - 2(0.7%) D1 - -
Family Euphthiracaridae

Rhysotritia ardua ardua - 2(3.1%) D3 - 1(04%)D1 10(7.3%) D4 3(1.6%) D2
Family Epilohmannidae

Epilohmannia pallida 11 (7.9%) D4 . 1(2.6%) D3 - 4(29%)D3 4 (2.1%) D3

Epilohmannia
cylindrica 23 (16.5%) D5 - - 8 (2.9%) D3 - 1(0.5%) D1
Family Lohmannidae

Lohmania hispaniola - - - - 13 (9.5%) D4 58 (31%) D5
Prostigmata 8(5.8%) D4 11 (17.2%) D5 8(21.1%) D5 20 (7.4%) D4 34 (24.8%) D5 38 (20.3%) D5
Collembola 7(5%)D4  2(31%)D3 5(13.2%)D5 87 (32%) D5 49 (35.8%) D5 10 (5.3%) D4
Other 31(22.3%) D5 4(6.3%)D4 4 (105%) D5 58(21.3%) D5 5(3.6%)D3 5 (2.7%) D3
Total abundance per samples 139 64 38 272 137 187
Number of species 10 10 8 10 10 10
Dominance (D) 0.14 0.12 0.14 0.26 0.21 0.21
Simpson (1-D) 0.85 0.87 0.85 0.74 0.79 0.79
Equitability 0.89 0.93 0.94 0.65 0.80 0.76
Shannon (H”) 2.07 2.15 197 1.52 1.87 1.77
Evenness 0.79 0.86 0.89 0.46 0.65 0.59

R.C. = relative contribution (%), D = Dominance classes for the identified mites are eudominants
(D5) with D > 10.0%, dominants (D4) with D of 5.1—, 10.0%, subdominants (D3) with D of 2.1
5.0%, recedents (D2) with D of 1.1-2.0 and subrecedents (D1) with D < 1.1%. (Engelmann, 1978)
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Table (4): Abundance and relative contribution (%) of soil fauna in all studied sites in spring
and summer

Spring Summer
Species Abundance (R.C.%) D Abundance (R.C.%) D
Cultivated Reclaimed Degraded Cultivated Reclaimed Degraded

Family Oribatulidae

Scheloribates laevigatus 3 (1.6%) D2 - - 11 (10.3%) D5 3 (8.3%) D4 -
Scheloribates
confundatus 41 (21.5%) D5 18 (28.6%) D5 15 (51.7%) D5 16 (15%) D5 12 (33.3%) D5 18 (36%) D5

Family Haplozetidae
Xylobates capucinus 7 (3.7%) D3 -
Family Oribatellidae

30 (28%) D5 5 (13.9%) D5 -

Lamellobates h.
egyptica - - - 1(0.9%) D1 - 1(2%) D3
Family Oppiidae
Oppia trifurcata 5(26%)D3  3(4.8%) D3 - - - -
Oppia variance - - - - - -
Family Euphthiracaridae
Rhysotritia ardua ardua 5(2.6%)D3 6(9.5%)D4 2(69%)D4 3(28%)D3 1(28%)D3 4 (8%) D4
Family Epilohmannidae
Epilohmannia pallida  1(05%)D1 12 (19%) D5 - 13(12.1%) D5 3(8.3%)D4 17 (34%) D5
Epilohmannia
cylindrica - - - - - -

Family Lohmannidae

Lohmania hispaniola - 3(4.8%) D3 - - - -
Prostigmata 37(194%) D5 6(9.5%)D4 2(6.9%)D4 12(11.2%) D5 7(19.4%)D5 3 (6%) D4
Collembola 61 (31.9%) D5 11 (17.5%) D5 6 (20.7%) D5 1 (0.9%) D1 - -
Other 31(16.2%) D5 4(6.3%)D4 4 (13.8%)D5 20 (18.7%) D5 5(13.9%) D5 7 (14%) D5
Total abundance per samples 191 63 29 107 36 50
Number of species 9 8 5 9 7 6
Dominance (D) 0.20 0.16 0.28 0.16 0.17 0.26
Simpson (1-D) 0.79 0.83 0.71 0.83 0.82 0.73
Equitability 0.78 0.93 0.87 0.87 0.94 0.84
Shannon (H’) 1.73 1.94 1.40 191 1.83 1.50
Evenness 0.62 0.87 0.81 0.75 0.89 0.75

R.C. = relative contribution (%), D = Dominance classes for the identified mites are eudominants (D5) with
D > 10.0%, dominants (D4) with D of 5.1—, 10.0%, subdominants (D3) with D of 2.1-5.0%, recedents (D2)
with D of 1.1-2.0 and subrecedents (D1) with D < 1.1%. (Engelmann, 1978)
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Fig. (3): Canonical correspondence analysis (CCA) ordination of soil fauna composition in
relation to abiotic factors and land-use types (CULT = cultivated; REC reclaimed; DEG =
degraded) in different seasons
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Discussion

This study reveals significant variations
in soil physicochemical properties and
faunal communities across three distinct
land-use  types across cultivated,
reclaimed, and degraded land-use types,
considering seasonal variations in an arid
agricultural context in the Nile Delta. The
results demonstrate that both land-use

management and seasonal dynamics
jointly  regulate  soil  ecosystem
functioning, with  cultivated  soils

generally supporting the most diverse and
abundant faunal communities, while
degraded soils exhibited simplified
assemblages dominated by stress-tolerant
taxa. Reclaimed soils, with their elevated
organic matter and balanced fauna,
represent a promising model for
sustainable soil rehabilitation.

Soil Physicochemical Properties

The study revealed significant variations
in fundamental soil properties, organic
matter (OM), salinity  (electrical
conductivity, EC), pH, and moisture
content, driven by both land-use type and
seasonal dynamics. Reclaimed soils
consistently exhibited the highest OM
content, particularly in spring, while
degraded soils maintained the lowest
levels throughout the year. Cultivated
soils showed intermediate OM levels.
This aligns with findings by Asmare et
al., (2023) and Abile et al. (2025), who
also reported significant impacts of land-
use type on soil physicochemical
properties. The higher OM in reclaimed
soils suggests successful rehabilitation
efforts or specific management practices
that enhance carbon sequestration,
contrasting with the depleted OM in
degraded lands, a common characteristic
of disturbed ecosystems (Chen et al.,
2024).
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Soil salinity demonstrated dramatic
fluctuations, with  reclaimed sites
experiencing extreme salt accumulation
in summer, while degraded soils showed
a distinct winter peak. Cultivated soils
maintained relatively stable, low salinity
levels. This seasonal and land-use
specific salinity pattern is critical, as high
salinity negatively correlates with soil
organic carbon content and can impact
nutrient  availability and microbial
diversity (Hassani et al., 2024; Akkacha
et al., 2025). The observed high salinity
in reclaimed soils during summer could
indicate issues with irrigation practices or
insufficient drainage, a challenge often
faced in reclamation projects (Pessoa et
al., 2022)

Soil pH was primarily influenced by land-
use type, with cultivated soils being the
most alkaline and reclaimed sites the least
alkaline. Degraded lands exhibited
intermediate, stable pH levels. Soil pH
plays a crucial role in nutrient availability
and microbial activity, and its variation
across land uses underscores differing
biogeochemical processes (Lallaouna et
al., 2025). Soil moisture content also
varied significantly, with reclaimed and
cultivated sites generally retaining higher
moisture than degraded sites, especially
after irrigation or rainfall. This highlights
the importance of land management in
maintaining soil water holding capacity,
which is vital for ecosystem functioning,
particularly in arid or semi-arid regions
(Kurylo et al., 2024)

Key soil properties, such as organic
carbon, nitrogen, phosphorus, pH,
texture, and moisture, directly impact soil
fauna. Higher organic matter and nutrient
content support greater abundance and
diversity, while soil pH and texture can
select for specific faunal groups. For
instance, soil pH is positively correlated
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with fauna density in acidic soils but
negatively in alkaline soils. Soil texture
(e.g., clay content) can restrict mobility
and habitat availability for some taxa.
Changes in these properties, driven by
both land use and seasonal dynamics,
alter the structure and function of soil
faunal communities (Kudureti et al.,
2023; Lee et al., 2020; Rakotonindrina
et al., 2025; Heydari et al., 2020; Galli
et al., 2025; Xu et al., 2025).
Macronutrient and Secondary Cation
Dynamics

Phosphorus availability was strongly
seasonal, with degraded soils showing the
highest available P in autumn, while
reclaimed soils exhibited low availability
in winter but higher levels in spring and
summer, suggesting effective reclamation
processes during growing seasons.
Potassium  dynamics revealed that
degraded soils consistently had the
highest available K, while reclaimed soils
had the lowest. Seasonal declines in
available K were observed across all sites
during spring and summer due to
increased plant uptake. These patterns
reflect the complex interplay between
nutrient cycling, plant demand, and soil
management practices, as highlighted by
Mandah et al., (2024) and Thant et al.,
(2025).

Secondary cations, sodium  (Na),
magnesium (Mg), and calcium (Ca), also
showed varied mobilities. Reclaimed
soils consistently exhibited the highest
Na accumulation, peaking in summer,
indicating a potential risk from irrigation
practices. Magnesium levels showed
extreme  seasonal fluctuations in
reclaimed  soils, while  calcium
distribution was remarkably stable across
seasons and sites. High sodium levels in
reclaimed soils are a common problem in
saline-sodic soils, which can negatively
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impact soil structure and nutrient
availability (Meng et al., 2025;
Rakotonindrina et al., 2025). The
stability of calcium, conversely, suggests
a strong buffering capacity within these
soil systems, crucial for maintaining soil
health (Ozlu et al., 2024).

Soil Fauna Composition and Diversity
The abundance and diversity of soil fauna
varied substantially among land-use types
and seasons, dominated by Oribatid mites
and Collembola.  Cultivated soils
generally supported the most diverse and
abundant communities across all seasons,
while degraded soils exhibited simplified
assemblages dominated by few tolerant
taxa. This is in line with research
indicating that land-use intensity and
disturbance significantly impact soil
biodiversity, with more diverse and stable
communities found in less disturbed or
well-managed systems (Lacerda-Janior,
et al., 2019).

Overall, cultivated soils maintained the
most stable physicochemical
environment and supported the highest
abundance and diversity of soil fauna
across seasons. For reclaimed sites
exhibited more balanced communities
with moderate densities and high
diversity, suggesting successful
ecological restoration. Degraded soils
maintained the lowest densities but
relatively high evenness, characterized by
generalist species (Scheloribates
confundatus) adapted to harsh conditions.
Seasonal analysis revealed autumn and
spring as optimal periods for soil
biodiversity, benefiting from favorable
temperature and moisture conditions,
while summer and winter showed
dominance effects despite high densities.
Notably, reclaimed sites demonstrated
remarkable temporal stability (summer-
autumn similarity=0.60), compared to the
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stochastic communities in degraded soils.
Species  exhibited clear  habitat
preferences, with Xylobates capucinus
and Epilohmannia pallida thriving in
cultivated lands versus Oppia trifurcata
and Rhysotritia ardua in reclaimed sites,
while Scheloribates confundatus served
as a reliable disturbance indicator.

The seasonal decline in fauna activity and
microhabitat availability observed in
summer across all sites underscores the
influence of environmental stressors,
such as desiccation, on soil invertebrate
populations. Many studies revealed
reclamation practices can significantly
increase the abundance and diversity of
soil fauna by improving food resources
and habitat quality, especially when
organic amendments and diverse
vegetation are introduced (Wang et al.,
2016; Yang et al., 2021; Jozefowska et
al., 2023; Zhu et al., 2023). Enhanced
soil fauna communities, in turn,
contribute to the maturation and
resilience of the soil food web, further
promoting soil fertility and ecosystem
multifunctionality (Yang et al., 2021;
Zhu et al., 2023; Mamabolo et al.,
2024). However, the effects of
reclamation on soil fauna are shaped by
management choices: sustainable
practices that minimize disturbance and
prioritize organic inputs tend to support
richer and more functional soil faunal
communities,  while  intensive  or
conventional approaches may reduce their
abundance and diversity (Mamabolo et
al., 2024; Menezes-Oliveira et al., 2021).
The Canonical Correspondence Analysis
(CCA) provides critical insights into the
mechanistic  drivers of community
assembly. The analysis revealed three
critical insights: Q) distinct
environmental gradients  structuring
communities in cultivated, degraded and
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reclaimed sites, (2) identification of
indicator species (e.g., salinity-tolerant
mites) reflecting specific management
histories, and (3) seasonal shifts in
biodiversity  patterns  demonstrating
ecosystem resilience.

Canonical Correspondence  Analysis
(CCA) further elucidated the
relationships  between  soil  fauna
assemblages, land-use types, and
environmental variables. The analysis
revealed three critical insights: (1)
distinct environmental gradients
structuring communities in cultivated,
degraded and reclaimed sites, (2)
identification of indicator species (e.g.,
salinity-tolerant mites) reflecting specific
management histories, and (3) seasonal
shifts in biodiversity patterns
demonstrating ecosystem resilience. In
autumn, organic matter and moisture
were key drivers, while in winter,
moisture and nitrogen became dominant.
Spring saw organic matter, carbon, and
nutrient availability governing
community structure, leading to the
greatest differentiation among land-use
types and highest biodiversity. By
summer, desiccation and salinity stress
became the main controlling factors,
resulting in reduced abundance and
simplified communities. This seasonal
ecological gradient, where moisture and
nutrient availability drive faunal diversity
in  cooler, wetter seasons and
salinity/drought stress constrain
communities during hot, dry periods,
demonstrates the joint regulation of soil
fauna  distribution and ecosystem
functioning by both land-use
management and seasonal climate (Ding
and Yu 2025).

Conclusion

In  conclusion, this study provides
compelling evidence that both land-use



174

practices (cultivated, reclaimed,
degraded) and seasonal variations exert
significant control over soil
physicochemical properties, nutrient
dynamics, and soil faunal communities.
Reclaimed soils, while showing promise
in organic matter accumulation, face
challenges with  seasonal salinity.
Degraded soils consistently exhibit lower
fertility and simplified biological
communities, highlighting the long-term
impacts of  environmental  stress.
Cultivated soils generally maintain more
stable conditions and support higher
biodiversity. The intricate interactions
revealed by this research underscore the
necessity of adaptive and sustainable land
management strategies that account for
both anthropogenic impacts and natural
seasonal cycles to preserve and enhance
soil health and ecosystem services.
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