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The present paper is devoted to the development of a new
schemes for solving the two-dimensional heat equation and two-
dimensional wave equation by the finite difference method (FDM)
and non-standard finite difference method (NSFDM). The stability
analysis for the two schemes is discussed and provides conditional
stability conditions. The local truncation errors of both schemes are
calculated, so confirm their consistency and convergence of the
schemes. Numerical results are obtained for two different test cases
for each equation and are compared with exact solutions and other
numerical results revealing absolute errors and generating
convergence tables. The graphical results show the spatial-temporal
behavior of solutions, emphasizing the effectiveness of the presented
schemes. When we compare the FDM with the NSFDM, the
NSFDM technique outperforms the latter in terms of numerical
artifact mitigation. This paper presents a comprehensive
methodology for solving multidimensional PDEs while maintaining
theoretical rigor (stability, error analysis) and practical validation
(numerical benchmarks), with applications in computational physics
and engineering.
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Introduction

The heat equation is a second-order
parabolic PDE that models how
temperature (or heat content) evolves over
time within a region. In the two-
dimensional case, it is commonly
formulated as

U, = @ity + 1) (1)

where u represents the temperature, t is
time, and o is thermal diffusivity
(Fourier, 1878). The heat equation is used
extensively to design and analyze systems,
as well as to improve the thermal
efficiency of buildings and machinery
(Carslaw and Jaeger, 1959). Moreover,
the importance of studying the heat
equation strongly appears in the design of
electronic components such as
microchips; it is essential for predicting
and managing heat distribution. Effective
thermal management prevents
overheating, which can lead to component
failure (Ozisik, 1993). Additionally, it is
used in medical treatments, such as
hyperthermia therapy for cancer, where
meticulous regulation of temperature is
essential to eradicate tumor cells while
preserving adjacent  healthy tissue
(Incropera and Dewitt, 2002). Recent
studies have expanded the applications
and deepened the understanding of the
heat equation. Advanced numerical
methods and computational techniques
have improved the accuracy of heat
transfer simulations in complex systems
(Kumar, 2018). Additionally, the
research into nonlinear heat equations has
opened new avenues for modeling more
complex thermal phenomena (Mainardi,
2010). Innovations in materials science
have led to the development of materials
with  tailored thermal  properties,
enhancing the efficiency of heat transfer

in various applications (Cahill, 2014).
Many numerical methods are used for
solving the nonlinear PDEs (Soliman et
al., 2007a; 2007b; 2008; 2009a; 2009b;
2009c; 2012a; 2012b; 2021). This
equation provides a framework for
analyzing temperature distribution across
surfaces, such as metal plates or electronic
components. Understanding the two-
dimensional heat equation is crucial for
optimizing thermal management
strategies, predicting heat transfer in
complex materials, and simulating
environmental  temperature  changes
(Gongalves and Gomes, 2022; AZoM,
2019). The wave equation is a second-
order linear PDE that models the
propagation of different wave types,
including acoustic waves, electromagnetic
waves, and water waves, through physical
media. Mathematically, it is expressed as

= (g + "w) )

where u denotes the wave function, t is the
time, and c denotes the constant wave
propagation velocity. Studying the wave
equation is crucial in multiple fields such
as acoustics, electromagnetism and fluid
dynamics. This equation helps understand
how waves travel through different media,
which has practical applications in
designing acoustic devices,
electromagnetic systems and
aerodynamics (Wikipedia). There are
many types of wave equations, such as the
linear wave equation, the nonlinear wave
equation, the multi-dimensional wave
equation and the damped wave equation
(Komatitsch et al, 1996). The
applications of the wave equation are vast
and varied, spanning across multiple
scientific domains. Electromagnetic waves



are described by Maxwell’s equations,
which are pivotal in understanding the
propagation of electromagnetic waves
through different media. Acoustic waves
are essential in the design of acoustic
systems, including microphones and
speakers, facilitating advancements in
sound technology. Lastly, seismic waves
are crucial for studying wave propagation
through the Earth’s interior, aiding in the
analysis and understanding of
earthquakes. These applications highlight
the fundamental role of wave equations in
scientific research and particle technology
(Li et al, 2017; Jaaskelainen, 2010;
Chen, 2010). In recent years numerous
studies have been conducted on the wave
equation to enhance our understanding of
superwaves and nuclear waves. For
example, the wave equation has been
utilized in the study of superwaves to
improve wired and wireless
communications. Additionally, it has been
applied in the study of nuclear waves to
understand particle interactions and
develop safe nuclear energy technologies
(Bezerra, 2010). This paper is organized
as follows: First, we present the two-
dimensional heat and wave equations.
Next, we introduce both finite difference
and non-standard  finite  difference
schemes for these equations. Our
discussion includes stability analysis for
both approaches when applied to the two-
dimensional heat and wave equations,
along with an evaluation of their local
truncation errors. The numerical results,
including a comparison with the exact
solutions and relevant figures, are
presented. We develop conditionally
stable schemes; one is based on the finite
difference method, and the other on the
non-standard approach. The stability
analysis for the schemes is detailed,
demonstrating their conditional stability.
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Numerical results are presented and
analyzed, followed by concluding
remarks.

The two-dimensional heat equation

The two-dimensional heat equation
belongs to the class of parabolic partial
differential equations that models the
diffusion of heat in isotropic materials. It
is solved using analytical methods, for
example, the separation of variables or
using numerical methods, including finite
difference, finite element, and spectral
approaches. The two-dimensional heat
equation has various applications in
science and engineering such as thermal
analysis of solids, geophysics and
environmental science, biomedical
engineering and material science. The
two-dimensional heat equation takes the
form

u,(x,y.t) = afu, (% y, 1) + u,, (. 0)],
where  x,y € [L,m],

The boundary conditions
u(0,y,t) =u(1,y,t) =0,
u(x,0,t) = ulx,1,£) =0, Yt = 0,

with initial conditions

u(x,y,0) = f(x,y),

The analytical solution is: (Grema et
al., 2022)

u(x, y,t) = e~ 287t gin(mx) sin(y).
Finite Difference Scheme
To numerically solve the two-dimensional
heat equation using the finite difference
method, we first derive discrete
approximations for the partial derivatives.

vt > 0,

W), = vz - vgl+ o0 3)

(un)_, =z [Un.,— 207 + U, ]+ O(h)?

4)
(UEJ)W = % [UFsq — 207 + U%_y |+ 0(h)?
®)
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where At= k and Ax = Ay = h.
The finite difference scheme of the Eq. (1)
can be written as follows:

up), — | () _+(@Uz) |=0 (6

By using the difference approximations
provided in relations (3) , (4) and (5) into Eq.
(6), then we get:

ozt —un] = = Uy, — 208 + UR )+
%[Uﬁ-'u 2U7; + U4
()
which can be written further as:
UM = U 4 ({8 - 208 4 U7 |+
(U211~ 202+ U7, ])
(8)
Then,
DR = POy 41Uy 4 (1400 +
rU"+1J /i
9)
wherer—hz, ; =th,y;=jh, and t, = nk
with ij=0,1,.. and n=0,1,... Here, the
superscript n indicates the quantity

corresponding to a specific time level £, and
the subscripts i,j represent the value
associated with the specific spatial mesh
points (x;,y;). Let u?; represent the analytical
solution at the grid point (x;, y;.t,), While U%
denotes the corresponding approximate
numerical value at the same grid point. This
scheme enables the formulation of an
algebraic system from which the numerical
solution is then derived.

Non-standard finite difference scheme

To numerically solve the two-dimensional
heat equation using the nonstandard finite
difference method, we first derive discrete
approximations for the partial derivatives.
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(vy), = W}[w‘*+1 U]+ o(k) (10)
(UB) = o [UB 1y — 2025 + U151+ 0 (B2
(11)

( l:.i') TUI}Z[ zuﬂ. +uﬂ 1]+0(]1)2

where At= k and Ax = Ay = h.

Then, we can write the nonstandard finite
difference scheme of the Eq. (1) as
follows:

g _
i-lJ] +@[ it 2”5‘ T ”Er‘—l]
(13)
The nonstandard finite difference scheme
is
UTI-+1= TU?IJ{'TUI;_]_"'(].—‘#)UI‘}"'

rU"HJ /i
(14)
where _ ap(t) _ ap()
BmY?*  y(n)* :
¢(k) =sin (k), B(h) = sin(h), y(k) =
sin(h), x; = ih

y;=jh, and t, = nk, with {,j=0,1,.. and
n= 0,1, ... Here, the superscript n indicates
the quantity corresponding to a specific
time level ¢, and the subscripts ij
represent the value associated with the
specific spatial mesh points (x;,y;). Let uf;
represent the analytical solution at the grid
point (xy;t,), While U denotes the
corresponding approximate numerical
value at the same grid point. This scheme
enables the formulation of an algebraic
system from which the numerical solution
is then derived.

Stability analysis of finite difference
scheme

Lemma (1): The scheme (9) exhibits
conditional stability.

(12)
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Proof. We employ Von-Neumann
stability analysis to examine the
scheme's stability through the following
approach

Ur = Fgfh(ik:"'jkr) , I=+—1

(15)

where k,, k, are the mode numbers and &
represents the element size. By
substituting Eg. (15) in Eq. (9) leads to

{rrl=gim (16)
where g denotes the growth factor, from
EQs. (16) and (9) we obtain
g™ = (e ™= + o™Mkx) 4 r(e ™y +
e'™y) +(1—47)}

(17)
g8" = {M{1-2r(1 - cos kh) - 2r(1 -
cos k,h)}
(18)

g= [1—4rsin® (557) —rsin? (3°)]
(19)
Now, we can prove that

|1 _ 4rsin? (’%") _ 4rsin? (5;)| <1

(20)
—1<1-8r<1 (21)
Therefore
1
0<r=<, (22)
Wherer = g

Thus, the scheme is conditionally stable.
Stability analysis of non-standard finite
difference scheme

Lemma (2): The scheme (14) exhibits
conditional stability.

Proof. We employ Von-Neumann stability
analysis to examine the scheme's stability
through the following approach

Un, = grel(fetinrey) T
(23)

Where k,, k, are the mode numbers and

Ax, Ay represent the element sizes.

Now, substituting Eqg. (23) into Eq. (14)

leads to

grit=ggn (24)
where g denotes the growth factor, and
from EQs. (24) and (14) we get

g{n = {ﬂ{rl(g_m[ﬂr}t: -|- Eiﬂ(ﬂ:)t:) .|.
1 (e 70V 4 ) 4 (125 35)
(25)

g" = §"{1- 2n(1- cosk f(Ax))-
Iny(1 - cos k, y(Ay))}
(26)
g = [t~ i (2) i (26

(27)
Now, we can prove that
. ke B(Ax) . (Ay)
|1 — 47, sin? (FT) — 47, sin® 572;)|"_: 1
(28)

0 < 45y sin® (“E2) 4 4z, sin? (2 < 2

(29)
O<r+r,<: (30)
Hence,
ag(ar) | aglar) 1
Bax? " y(&y)* T 2 (31)

ag{Az) (At)
Where = a5 72 = Sy

Therefore, the scheme is conditionally
stable.
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Local truncation error of finite
difference scheme

Lemma (3): The local truncation error
7y of the scheme 9 IS
O(At + (Ax)? + (Ay)?).

Proof. To estimate the truncation error of
scheme (9), we perform a Taylor
expansion. The local truncation error is
given by:

= b ]~ s e — 2l
“:'—u] —@[“Em— 2y +ufy 4]

(32)
using Taylor’s series expansion, we get

), G,

(33)

1( n+l n

o (g — 2y +up 1) = (52 +
(ax)® VLI —1J =)

2 fatu\"
(34)
1 ra no o ) [Fu '
W (o — 2y iy y) = (37)”_ t
Oy
12 (3”'):'J+
(35)
substitution from (33) (34)and(35) into (32)
5=G), -G 5 +5 63, -
a(Ax)® f3*u
i‘;‘ ) “L"’ )
(36)

But is the solution of differential Eq. (1),

SO
(ﬂu)" (ﬂzu_l_azu)“ o
— _a — — ==
at/;; ax?  ay? i
(32)

Therefore, the foremost term in the
local truncation error is given by
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At (azu)“ a(Ax)? (a‘*u) a(ﬁy)z(ﬂ“‘ )
2 \ae? .-.j_ 12 \ax* 12 \ay*

Then, the local truncation error is
= 0(At + (Ax)*+ (Ay)D)  (37)

Local truncation error of non-Standard
finite difference scheme

Lemma (4): The local truncation error
Yy of the scheme (14) is

O(¢(at) + B(Ax)*+y(Ay)?).
Proof. To estimate the truncation error of
scheme (14), we perform a Taylor

expansion.
The local truncation error is given by:

= [ nil_ n

0= gl -] gl
]
iy by |l 2
(38)
using Taylor’s series expansion, we get

st~ + )
.
n
gttt a)=()

Bt ()"
n _r‘)l- J—+
(40)

ﬁ (uljer — 2uf; +ufyy) = (227:); +
v(ay)? (ay‘) ;-
(41)

substitution from (39), (40) and (41) into
(38)

AL
( ij ﬁ I.J +
P(ar) (ﬂzu aﬂ(ax}’ Fuy  ar(ay)® (ﬂ‘u
2 \aet/y 12 ax" 12 aly"
(42)



But is the solution of differential Eq. (1),
SO

(Bu)" (ﬂzu N Bzu)" 0
— _a —_— — )
at/; dax?  dy? "

Then, the local truncation error is

;= 0(¢(At) + p(Ax)* +v(Ay)?)

(43)
Numerical Results
This section presents the numerical results
for the two-dimensional heat equation
using Test Problem (1). Both the FDM
and NSFDM were employed to solve the
partial differential equation, verifying
the schemes' accuracy and
computational efficiency. The absolute
error, defined as the difference between
the numerical and exact solutions, was
used as a measure of accuracy. The results
are summarized and presented in Tables
[1-2].
Test Problem (1):
The two-dimensional heat equation is
expressed as
u,(x,3,t) = afu(x,y.1) +u,, (xy.0)],
Where x, y € [0,1]
The boundary conditions
u(0,y,t) =u(Ly,t) =0,
u(x,0,t) = u(x,1,£) =0,
with initial conditions
u(x,y,0) = f(x.y).
The analytical solution is: (Grema et
al., 2022)
u(x,y,t) = e 297t sin(mx) sin(iy).
Let use steps sizes h = 0.05, k =0.0001, M
= 5000, N =20 and o = 1. Now, we use
the FDM and the NSFDM to find
numerical solutions for this example.

Vi > 0,
vt > 0,
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Table (1): Analytical and numerical results at
y=0.5 using FDM

X Analytical FDM Absolute error
solution

0 0 0 0
0.05 | 8.09129x10~¢ | 8.17721x10~% 8.59229x10~ "
0.1 | 0.0000159833 | 0.0000161531 1.6973x1077
0.15 | 0.0000234818 | 0.0000237312 | 2.49358x10°7
0.2 | 0.0000304021 | 0.000030725 | 3.22846x10~7
0.25 | 0.0000365738 | 0.0000369622 | 3.88384x10~7
0.3 | 0.0000418449 | 0.0000422893 | 4.44359x10~7
0.35 | 0.0000460857 | 0.0000465751 | 4.89392x10~7
0.4 | 0.0000491917 | 0.000049714 | 5.22375x10°7
0.45 | 0.0000510864 | 0.0000516289 | 5.42496x10~7
0.5 | 0.0000517232 | 0.0000522724 | 5.49258x10~7
0.55 | 0.0000510864 | 0.0000516289 | 5.42496x10~7
0.6 | 0.0000491917 | 0.000049714 | 5.22375x10~7
0.65 | 0.0000460857 | 0.0000465751 | 4.89392x10~7
0.7 | 0.0000418449 | 0.0000422893 | 4.44359%x10~7
0.75 | 0.0000365738 | 0.0000369622 | 3.88384x10°7
0.8 | 0.0000304021 | 0.000030725 | 3.22846x10°7
0.85 | 0.0000234818 | 0.0000237312 | 2.49358x10~7
0.9 | 0.0000159833 | 0.0000161531 1.6973x1077
0.95 | 8.09129x10-%| 8.17721x10~% 8.59229x10~8

1 6.33426x10° %1 0 6.33426x10° %!

—
» 0.00003
S
-

Table (1) gives the approximate solution
for this example at y = 0.5 and its
comparison to the analytical solution.
Includes the absolute error. The maximum
value of error for this example in the
interval [0, 1] is

leo = 549258 x 1077

0.00005

0.00004

0.00002

m= Analytical
- App.

0.00001

0.00000

0.0 0‘2 014 0.‘6 0.‘8
X

Fig. (1): The numerical outcomes and

analytical solutions by FDM at y=0.5

the
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Table (2): Analytical and numerical results at y=0.5

using NSFDM
Xi Analytical NS-FDM Absolute error
solution

0 0 0 0
0.05 8.09129x10°° 8.11021x107% | 1.89162x10®
0.1 | 0.0000159833 0.0000160207 | 3.73666x1078
0.15| 0.0000234818 0.0000235367 | 5.48969x10~°
0.2 0.0000304021 0.0000304732 7.10755x108
0.25 | 0.0000365738 0.0000366593 8.55039x 108
0.3 | 0.0000418449 0.0000419428 9.7827x10°°
0.35 | 0.0000460857 0.0000461934 1.07741x1077
0.4 0.0000491917 0.0000493067 1.15003x10~7
0.45 | 0.0000510864 0.0000512058 1.19432x1077
0.5 | 0.0000517232 0.0000518441 1.20921x1077
0.55 | 0.0000510864 0.0000512058 1.19432x1077
0.6 0.0000491917 0.0000493067 1.15003x10~7
0.65 | 0.0000460857 0.0000461934 | 1.07741x1077
0.7 | 0.0000418449 0.0000419428 9.7827x10~2
0.75 | 0.0000365738 0.0000366593 8.55039x 10
0.8 0.0000304021 0.0000304732 7.10755x10~#8
0.85 | 0.0000234818 0.0000235367 | 5.48969x10~®
0.9 | 0.0000159833 0.0000160207 | 3.73666x1078
0.95 8.09129x10°° 8.11021x10°% | 1.89162x10~®

1 6.33426x 10~ 2! 0 6.33426x10~2!

u(x)

Table (2) gives the approximate solution for
this example at y = 0.5 and its comparison to
the analytical solution. Includes the absolute
error. The maximum value of error for this
example in the interval [0, 1] is

I, = 120921 x 1077

0.00005
0.00004 |
0.00003

0.00002 |-

=== Analytical
= App.

0.00001

0.00000 4 . . ; . A
0.0 0.2 0.4 0.6 b8 1.0

Fig. (2): The numerical outcomes and the
analytical solutions by NSFDM at y=0.5
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In Figures [1, 2], for xe[0,1] at y=0.5, the
numerical results are represented by a
black curve, while analytical solutions
are shown as a red curve. We conclude
that the analytical and numerical
solutions obtained by NSFDM are very
close, which gives more accuracy to the
solution.

[ numerical
E Exact

u(x,y.t)

Fig. (3): The numerical outcomes and the

analytical solutions by FDM

W Numerical
il Exact

u(xy.t)

X

Fig. (4): The numerical outcomes and the
analytical solutions by NSFDM

In Figures [3, 4], within the interval [0, 1],
the numerical results are represented by a
blue solid surface, while the analytical
solutions are shown as a transparent surface
with red mesh. We conclude that the
analytical and numerical solutions obtained
by NSFDM are very close, which gives more
accuracy to the solution.
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The two-dimensional Wave equation
The two-dimensional wave equation is a
hyperbolic PDE, describing the propagation
of waves in elastic media, such as sound
waves, water waves, or vibrations in a
membrane. It is solved using analytical
methods for example, the separation of
variables or wusing numerical methods,
including finite difference, finite element,
and spectral approaches. The two-
dimensional wave equation has many
practical applications in physics,
engineering, and other fields such as
acoustics and sound propagation, vibrations
in membranes and plates, electromagnetic
wave propagation, computer graphics and
animation. The two-dimensional wave
equation takes the form:

u, (%, y.t) = ?|u, (xy.t) + u,, (x.y. 0]
Where x,y € [I,m],

The boundary conditions
u(0,y.t) =u(Ly.t)=0, Yt = 0,
u(x,0,t) = u(x,1,£) =0, Yt = 0,
with initial conditions
u(x,y,0) = f(xy),
u,(x,y.0) = g(x.5),
The analytical solution is: (Daileda,
2014)
u(x,y,t) =co s(ﬁnct) sin(mx) sin(my).
Finite difference scheme
To numerically solve the two-dimensional
wave equation using the finite difference
method, we first derive discrete
approximations for the partial derivatives.

W), = & U5 — 207 + U]+ 07 4

W), = 3 [Uhy — 207 + U1 ] + 0

(45)
(UI.’;),, = % [U5y41 — 207+ UT ] + O(0)?
(46)

where At=k and Ax =Ay =h

The finite difference scheme of the Eq.
(2) can be written as follows:

(uz),, — 2| (um)_+ (wz) |=o0 (47)

By using the difference
approximations provided in relations
(44) , (45) and (46) into Eq. (47), then
we get:

o B —20g; + v =

K2
cﬂ
= [UBa;— 22U + UR ] +
cﬂ

[UF41 — 2U7 + UT,

(48)
which can be written further as:

nZ

Ul =rful, s+ riUlo + 200 -
2r2)UT; + r2U% j+ 12U, — U
(49)
where r==, x;=ih, y,=jh, and

t, =nk, With ij=01,.. and n=101, ..
Here, the superscript n indicates the
quantity corresponding to a specific time
level t,, and the subscripts i,j represent the
value associated with the specific spatial

mesh points (x;,y;). Let uf; represent the

analytical solution at the grid point
(xuyptn), While w©®  denotes the
corresponding  approximate numerical
value at the same grid point. This scheme
enables the formulation of an algebraic
system from which the numerical solution
is then derived.

Non-standard finite difference
scheme

To numerically solve the two-dimensional
wave equation using the nonstandard
finite difference method, we first derive
discrete approximations for the partial
derivatives.

(U5),, = gor V5™ — 205 + U5 ]+ 02

(50)
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(), ﬁ-m}z[ feag — 200 + UL ]+ O(R)?
(51)

( u) r(h}z[ug+1—2u€j+u1¢_1]+am)2
(52)
where At= k and ax= Ay = h. The

nonstandard finite difference scheme of
the Eq. (2) can be written as follows:

(wr),, — 2| (wr)_+wr) =0 (53)

By using the difference
approximations provided in relations
(50), (51) and (52) into Eg. (53), then
we get:

[U‘n.+1_zun. +Uﬂ. 1] —

wck)
7 mz [Ur,,; — 20" +UP, ]+
CE

W[ugjﬂ 22U+ UL,

(54)
which can be written further as:

Un+1 = TZU:‘ Lj +r UI...J 1 + 2(1 —
ZrZ)U" +r2ul, ;+riUl,, - UNT

(55)
o) cp)
where R T ) !
¢(k) = sin (k), B(h) = sin(h), y(h) =
sin(h), x; = ith

y;=jh, and t, = nk, with i,j=0,1,.. and
n= 0,1, ... Here, the superscript n indicates
the quantity corresponding to a specific
time level ¢, and the subscripts i,j
represent the value associated with the
specific spatial mesh points (x;,y;). Let uf;
represent the analytical solution at the grid
point (x;y;t,), While uZ denotes the
corresponding  approximate numerical
value at the same grid point. This scheme
enables the formulation of an algebraic
system from which the numerical solution
is then derived.
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Stability analysis of finite
difference scheme

Lemma (5). The scheme (49) exhibits
conditional stability.

Proof. We employ Von Neumann
stability analysis to examine the
scheme's stability through the following
approach

up = gre™it=tis) | [=y—1 (56)

where k,, k,, are the mode numbers and
h represents the element size.

By substituting Eq. (56) into Eqg. (49)
leads to

gnil=gin (57)

where g denotes the growth factor,
from EQs. (57) and (49) we get

g*—2g [1 — 2risin® (%h) —

2r2sin® (?)] +1=0 (58)

We assume that the roots of equation are
g1 and g,. Now, we can prove that

1—2rsin? (=) — 2r2%sin? () <1 (59)

—1< 1 2r2sin? (%2) — 2r%sin? (27) < 1
(60)
That s, ri= ”?f cannot be a
negative quantity, that is the
inequality (59) leads to r% > 0, and this
Is true to satisfy the inequality (60)
0 < 2r2sin? (=) + 2r2%sin? (") <2 (61)

Therefore

1
;<r<g (62)

]

Then the equation (58) can be written
as

g>—2gcos{+1=0

g=cos{ +Jcos?{—1 (63)



Where

cos {=1 — 2rZsin® (k:—h) — 2rlsin? (%)
thus yields | g, =1 g.| = 1.

Thus, the scheme is conditionally stable.
Stability analysis of non-standard
finite difference scheme

Lemma (6): The scheme (55) exhibits
conditional stability.

Proof. We employ Von Neumann
stability analysis to examine the
scheme's stability through the following
approach

U, = {Tlef(ik.:p(ﬂl}'l‘fky?(ﬂ?}) =
(64)

Where k,, k,, are the mode numbers and
Ax, Ay represent the element sizes. Now,
substituting Eq. (64) into Eq. (55)
leads to

§rt = ggn (65)

where g denotes the growth factor,
and from EQs. (65) and (55) we get

g — [1 _ 2";‘:(”‘;2}2 (t ﬁ(mr})
‘__z z
:;T;i (k, ﬂi\:r})] 41—

(66)

We assume that the roots of equation
are d1and 9z2. Now, we can prove that

< lar? k; BlA) e’ o (kyyly)
-2 s “‘( ) 2 * ( )
|51
(67)
nczgﬂﬁf (""M)H"zm‘f (2 <3
(68)
Hence,
Fean)? | plan?
=1
B(ax)*® + riay)?

(69)
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Then the equation (66) can be written
as

g*—2gcos{+1=0

g=cos{ +Jcos?{—1 (70)
Where
cos{=

.-F,umt}z k. BlAx a4k, yity)
1278 S sin® (R77) — 2% 8 s (P1)

thus yields | g,]=1g:1=1

Therefore, the scheme is conditionally
stable.

Local truncation error of finite
difference scheme

Lemma (7): The local truncation

error 4 of the scheme (49) is

O((ar)? + (ax)2 + (ay)?).

Proof. To estimate the truncation error of
scheme (46), we perform a Taylor
expansion. The local truncation error is
given by:

_ 1 1 1
TEJ' - (ﬂ.t)z [u::;— - Zu + uﬂ- ] —

&2

(ax)? [u?+1 oF 2“ + ul.—l ]] -
&2

[-!11')2 [u!l:jf+1 2"’ + u; }—1]

(71)
using Taylor’s series expansion, we get

n
1 L (-2 4 urt) = (ﬁ)i‘ﬁ

(a:h:)z a?
(At) (a‘u)
at T
(72)
1y ouy"
(ﬂ_‘)z (ui+1} 2“ +u’l 1}) xz)i'}--l-
e ("
12 x‘),-'j T
(73)
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1
W(u}:ﬂl 2uf; +ufy )= (ﬂyz i

(a:v) C‘u) L.

(74)

substitution from (72), (73) and (74)
into (71)

ﬂzu ﬂzu !.I'.
n _ (22 4=
n= () e (a2 ¢
(ar)® u) _ (.1.:)2 (g‘u _c® ay)?
1z i ij 12 ﬂ:v‘

(75)

But is the solution of differential Eqg.

(2), so

a2u\" - a=u+a=u ™ _0
atz)  “ \axz " ayz)
L.J L.

Therefore, the foremost term in the
local truncation error is given by
Then, the local truncation error

LR G\ S G i) S
1z \ac* 1z ax*/;j
c‘(ﬁy}z(t;‘u

= 0((At)* + (Ax)* + (ay)?)  (76)

Local truncation error of non-
standard finite difference scheme
Lemma (8). The local truncation

error tf of the scheme (55) is

O(e(at)® + B(ax)* +y(ay)?).

Proof. To estimate the truncation error of
scheme (55), we perform out a Taylor
expansion. The local truncation error is
given by:

1
n _ ntl _ 9.0 n-1]_
1 = gao® [uff* — 2uf; +ufi ]

z
ﬁ[ﬂ?ﬂj 2u? +ul_”]
ﬁ[ﬂgj+1 2"’ +"':.1 1]
(77)
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using Taylor’s series expansion, we get

N;ﬂz(u’-;}l 2uf; +ufs )= ( )

(78)
ﬁ(“ﬁn Z‘I'.I: +u: 1}) (_
3(,1,)2 3'u
G+
(79)

az n
@(“Em u; +“u 1] (ﬂy:) +

y(ly)* C’;“ u) !

(80)
substitution from (78), (79) and (80)
into (77)
Zu\"
l.J ( +F i +
¢(ar)* ﬁ) _ c® B(ax)? ﬁ) _
1z \at*/;; 12 dx*
e y(ay)* (3*u "
12 \ayt/p ;T

(81)
But is the solution of differential Eqg.

(2), so

7u\" (9% 2%w\" _

atz)] ~“\axz " ayz). T

L.j L.J
Therefore, the foremost term in the local
truncation error is given by
HCALP _u)" & plax)? (a‘_u "
12 \ast 12 axt); ;

(5,

Then, the local truncation error is

2 = 0(@(A)* + B(Aax)? +y(Ay)?)

(82)
Numerical Results
This section presents the numerical
results for the two-dimensional wave
equation using Test Problem (2). Both
the FDM and NSFDM were employed to
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solve the partial differential equation, Table (3): Analytical and numerical results at
verifying the schemes' accuracy and y=0.5 using FDM

computational efficiency. The absolute x, | Analytical FDM | Absolute error
error, defined as the difference between solution

the numerical and analytical solutions, 0 0 0 0

was used as a measure of accuracy. The 0.05| 0.15259 | 0.152606 | 0.0000155057
results are summarized and presented in 0.1 | 0.301424 0.301454 | 0.0000306297
Tables [3-6]. 0.15| 0.442835 0.44288 | 0.0000449994
Test Problem (2): 0.2 0.573342 0.5734 | 0.0000582611
The two-dimensional wave equation is 0.25| 0.689731 0.689801 | 0.0000700882
expressed as 0.3 0.789137 0.789217 | 0.0000801896

U (0,3, 8) = [t (0,3.6) + 1y, (1,3, )] 0.35| 0869112 | 0.8692 | 0.0000883163

0.4 0.927686 0.927781 | 0.0000942685
Where «x,y € [0,1]

0.45| 0.963418 0.963516 | 0.0000978994

The boundary conditions 05| 0975427 | 0.975526 | 0.0000991197

u(0.y.t) =u(Ly.)=0, Vvt >0, 0.55| 0.963418 | 0.963516 | 0.0000978994

u(x0,0)=u(x L5 =0, Vi> 0, 0.6 | 0027686 | 0.927781 | 0.0000942685

with initial conditions 0.65| 0869112 | 0.8692 | 0.0000883163
u(x,3,0) = f(5.9), 0.7 | 0789137 | 0.789217 | 0.0000801896

u,(x,y.0) = g(x.y), 0.75| 0.689731 0.689801 | 0.0000700882

The analytical solution is: (Daileda, 0.8 | 0.573342 0.5734 | 0.0000582611

0.85| 0.442835 0.44288 | 0.0000449994

2014)
0.0 | 0.301424 | 0.301454 | 0.0000306297

u(x,y, t) = cos(v2mct) sin(mx) sin(my). 005 015259 | 0.152606 | 0.0000155057

Let use steps sizes h = 0.05, k = 0.0001, 1 [1.19455x10-16 0 1.19455x10- 16

M =500, N =20 and c = 1. Now, we use
the FDM and the NSFDM to find Table (3)

. : ) gives the approximate
numerical solutions for this example.

solution for this example at y = 0.5
and its comparison to the analytical
solution. Includes the absolute error.
The maximum value of error for this
example in the interval [0,1] is

1., = 0.000099119

10 F
0.8
- 06
=
S
04}
02| === Analytical
e App.
0.0 & ‘ .
0.0 0.2 04 0.6 0.8 1.0
X

Fig. (5): The numerical outcomes and the
analytical solutions by FDM at y=0.5
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Table (4): Analytical and numerical results at
y=0.5 using NSFDM
X Analytical NS-FDM | Absolute error
solution
0 0 0 0
0.05 0.15259 0.152603 |0.0000123268
0.1 0.301424 0.301448 |0.0000243501
0.15 0.442835 0.44287 |0.0000357739
0.2 0.573342 0.573388 |0.0000463167
0.25 0.689731 0.689787 |0.0000557191
0.3 0.789137 0.789201 |0.0000637495
0.35 0.869112 0.869182 |0.0000702101
0.4 0.927686 0.927761 | 0.000074942
0.45 0.963418 0.963496 |0.0000778285
0.5 0.975427 0.975506 |0.0000787987
0.55 0.963418 0.963496 |0.0000778285
0.6 0.927686 0.927761 | 0.000074942
0.65 0.869112 0.869182 |0.0000702101
0.7 0.789137 0.789201 |0.0000637495
0.75 0.689731 0.689787 |0.0000557191
0.8 0.573342 0.573388 |0.0000463167
0.85 0.442835 0.44287 |0.0000357739
0.9 0.301424 0.301448 |0.0000243501
0.95 0.15259 0.152603 |0.0000123268
1 |1.19455%x10-1¢ 0 1.19455x
lﬂ—‘li

Table (4) gives the approximate solution
for this example at y = 0.5 and its
comparison to the analytical solution.
Includes the absolute error. The
maximum value of error for this example
in the interval [0, 1] is

l.. =0.0000787987

08

0.6

u(x)

04

=== Analytical
e App

02

0.0 &8 s L
0.0 02 04 06 0.8 1.0
X
Fig. (6): The numerical outcomes and the

analytical solutions by NSFDM at y=0.5
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In Figures [5, 6], for x€[0,1] at y=0.5,
the numerical results are represented
by a black curve, while analytical
solutions are shown as a red curve. We
conclude that the analytical and
numerical solutions obtained by NSFDM
are very close, which gives more
accuracy to the solution.

- Numerical
@ Exact

u(x,y.t)

Fig. (7): The numerical outcomes and the
analytical solutions by FDM

y

u(x,y,t)

Fig. (8): The numerical outcomes and the
analytical solutions by NSFDM

In Figures [7, 8], within the interval [0,1],
the numerical results are represented by a
blue solid surface, while the analytical
solutions are shown as a transparent
surface with red mesh. We conclude that
the analytical and numerical solutions
obtained by NSFDM are very close,
which gives more accuracy to the
solution.
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Table (6): Analytical and numerical results

In case of k=0.01 and h=0.05. at

Table (5): Analytical and numerical results at

k=0.01 and y=0.5 using NSFDM

k=0.01 and y=0.5 using FDM X; AnaIyFicaI NS-FDM |Absolute error
solution
x; Analytical FDM | Absolute error 0 0 0 0
solution 0.05] 0.15259 | 0.15336 | 0.000769115
0 0 0 0 01| 0.301424 |0.302943| 0.00151929
005 | 015250 10.153362 | 0.0007 1567 0.15| 0.442835 |0.445067| 0.00223206
02 | 0573322 105762411 0.00289908 0.3 | 0.789137 |0.793115| 0.00397756
0.3 | 0.789137 |0.793127| 0.00399024 0.4 ] 0927686 |0.932362| 0.0046759
0.35 | 0.869112 |0.873507| 0.00439463 0.45| 0963418 0.968274| 0.004856
045 | 0.963418 | 0.96829 | 0.00487148 0.55]| 0963418 0.968274| 0.004856
05 | 0975427 |0.980359| 0.00493221 0.6 | 0927686 |0.932362| 0.0046759
055 | 0963418 | 0.96829 | 0.00487148 0.65| 0.869112 |0.873493| 0.00438066
06 | 0927686 10932377 | 000469081 0.7 | 0.789137 |0.793115| 0.00397756
065 | 086912 10873507 | 0.00439463 0.75| 0.689731 |0.693208| 0.00347651
07 | 0789137 10793127 | 0.00399024 0.8 | 0573342 |0.576232| 0.00288987
075 | 0689731 10693219 0.0034876 0.85| 0.442835 |0.445067| 0.00223206
08 | 0573342 05762411 0.00289908 0.9 | 0301424 |0.302943| 0.00151929
0.85 | 0.442835 |0.445074| 0.00223918 0.95| 0.15259 | 0.15336 | 0.000769115
0.9 | 0.301424 |0.302948| 0.00152414 1.0 ]1.19455x107% 0 1.19455x
0.95| 0.15259 |0.153362 | 0.000771567 10
1.0 |1.19455x10 %] 0  |1.19455x10 't
10F
10F
0.8
0.8
o 2 0.6
=

u(x)

= Analytical i

= Analytical i

-3

App.

29

App.

0.2

0.4 0.6

02 0.4 06 0.8 1.0

0.8

Fig. (10): The numerical outcomes and the

Fig. (9): The numerical outcomes and the

analytical solutions at k=0.01 and y=0.5 by FDM NSFDM

analytical solutions at k=0.01 and y=0.5 by
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[l Numerical
B Exact

u(xy,t)

X

Fig. (11): The numerical outcomes and the
analytical solutions at k=0.01 by FDM

y

Il Numerical
[l Exact

X
1.0

Fig. (12): The numerical outcomes and the
analytical solutions at k=0.01 by NSFDM

Conclusion

In this paper, the exact and numerical
solutions for Test Problems 1 and 2 are
presented using the proposed methods.
By comparing the finite difference
method with the non-standard finite
difference method, we conclude that the
non-standard finite difference method
achieves higher accuracy. The absolute
error analysis demonstrates that our
method provides a reliable
approximation for solving the two-
dimensional heat and wave equations
using the finite difference approach.
Additionally, the stability analysis of
both methods, conducted using Von-
Neumann theory, reveals that they are

Soliman et al., (2025)

conditionally stable when applied to the
two-dimensional heat and  wave
equations.
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