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 The present paper is devoted to the development of a new 

schemes for solving the two-dimensional heat equation and two-

dimensional wave equation by the finite difference method (FDM) 

and non-standard finite difference method (NSFDM). The stability 

analysis for the two schemes is discussed and provides conditional 

stability conditions. The local truncation errors of both schemes are 

calculated, so confirm their consistency and convergence of the 

schemes.  Numerical results are obtained for two different test cases 

for each equation and are compared with exact solutions and other 

numerical results revealing absolute errors and generating 

convergence tables. The graphical results show the spatial-temporal 

behavior of solutions, emphasizing the effectiveness of the presented 

schemes. When we compare the FDM with the NSFDM, the 

NSFDM technique outperforms the latter in terms of numerical 

artifact mitigation. This paper presents a comprehensive 

methodology for solving multidimensional PDEs while maintaining 

theoretical rigor (stability, error analysis) and practical validation 

(numerical benchmarks), with applications in computational physics 

and engineering. 
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Introduction 

The heat equation is a second-order 

parabolic PDE that models how 

temperature (or heat content) evolves over 

time within a region. In the two-

dimensional case, it is commonly 

formulated as 

                           (1) 

where u represents the temperature, t is 

time, and α is thermal diffusivity 

(Fourier, 1878). The heat equation is used 

extensively to design and analyze systems, 

as well as to improve the thermal 

efficiency of buildings and machinery 

(Carslaw and Jaeger, 1959). Moreover, 

the importance of studying the heat 

equation strongly appears in the design of 

electronic components such as 

microchips; it is essential for predicting 

and managing heat distribution. Effective 

thermal management prevents 

overheating, which can lead to component 

failure (Ozisik, 1993). Additionally, it is 

used in medical treatments, such as 

hyperthermia therapy for cancer, where 

meticulous regulation of temperature is 

essential to eradicate tumor cells while 

preserving adjacent healthy tissue 

(Incropera and Dewitt, 2002). Recent 

studies have expanded the applications 

and deepened the understanding of the 

heat equation. Advanced numerical 

methods and computational techniques 

have improved the accuracy of heat 

transfer simulations in complex systems 

(Kumar, 2018). Additionally, the 

research into nonlinear heat equations has 

opened new avenues for modeling more 

complex thermal phenomena (Mainardi, 

2010). Innovations in materials science 

have led to the development of materials 

with tailored thermal properties, 

enhancing the efficiency of heat transfer 

in various applications (Cahill, 2014). 

Many numerical methods are used for 

solving the nonlinear PDEs (Soliman et 

al., 2007a; 2007b; 2008; 2009a; 2009b; 

2009c; 2012a; 2012b; 2021). This 

equation provides a framework for 

analyzing temperature distribution across 

surfaces, such as metal plates or electronic 

components. Understanding the two-

dimensional heat equation is crucial for 

optimizing thermal management 

strategies, predicting heat transfer in 

complex materials, and simulating 

environmental temperature changes 

(Gonçalves and Gomes, 2022; AZoM, 

2019). The wave equation is a second-

order linear PDE that models the 

propagation of different wave types, 

including acoustic waves, electromagnetic 

waves, and water waves, through physical 

media. Mathematically, it is expressed as 

                    (2) 

where u denotes the wave function, t is the 

time, and c denotes the constant wave 

propagation velocity. Studying the wave 

equation is crucial in multiple fields such 

as acoustics, electromagnetism and fluid 

dynamics. This equation helps understand 

how waves travel through different media, 

which has practical applications in 

designing acoustic devices, 

electromagnetic systems and 

aerodynamics (Wikipedia). There are 

many types of wave equations, such as the 

linear wave equation, the nonlinear wave 

equation, the multi-dimensional wave 

equation and the damped wave equation  

(Komatitsch et al., 1996). The 

applications of the wave equation are vast 

and varied, spanning across multiple 

scientific domains. Electromagnetic waves 
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are described by Maxwell’s equations, 

which are pivotal in understanding the 

propagation of electromagnetic waves 

through different media. Acoustic waves 

are essential in the design of acoustic 

systems, including microphones and 

speakers, facilitating advancements in 

sound technology. Lastly, seismic waves 

are crucial for studying wave propagation 

through the Earth’s interior, aiding in the 

analysis and understanding of 

earthquakes. These applications highlight 

the fundamental role of wave equations in 

scientific research and particle technology 

(Li et al., 2017; Jaaskelainen, 2010; 

Chen, 2010). In recent years numerous 

studies have been conducted on the wave 

equation to enhance our understanding of 

superwaves and nuclear waves. For 

example, the wave equation has been 

utilized in the study of superwaves to 

improve wired and wireless 

communications. Additionally, it has been 

applied in the study of nuclear waves to 

understand particle interactions and 

develop safe nuclear energy technologies 

(Bezerra, 2010). This paper is organized 

as follows: First, we present the two-

dimensional heat and wave equations. 

Next, we introduce both finite difference 

and non-standard finite difference 

schemes for these equations. Our 

discussion includes stability analysis for 

both approaches when applied to the two-

dimensional heat and wave equations, 

along with an evaluation of their local 

truncation errors. The numerical results, 

including a comparison with the exact 

solutions and relevant figures, are 

presented. We develop conditionally 

stable schemes; one is based on the finite 

difference method, and the other on the 

non-standard approach. The stability 

analysis for the schemes is detailed, 

demonstrating their conditional stability. 

Numerical results are presented and 

analyzed, followed by concluding 

remarks. 

The two-dimensional heat equation 

The two-dimensional heat equation 

belongs to the class of parabolic partial 

differential equations that models the 

diffusion of heat in isotropic materials. It 

is solved using analytical methods, for 

example, the separation of variables or 

using numerical methods, including finite 

difference, finite element, and spectral 

approaches. The two-dimensional heat 

equation has various applications in 

science and engineering such as thermal 

analysis of solids, geophysics and 

environmental science, biomedical 

engineering and material science. The 

two-dimensional heat equation takes the 

form 

,       

where       

  The boundary conditions 

, , 

  

with initial conditions 

 
The analytical solution is: (Grema et 

al., 2022) 

 
Finite Difference Scheme 

To numerically solve the two-dimensional 

heat equation using the finite difference 

method, we first derive discrete 

approximations for the partial derivatives. 

                (3)                                              

             

(4)  

                                       

(5) 
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where = k and   = h. 

The finite difference scheme of the Eq. (1) 

can be written as follows: 

                                             

       (6)  

By using the difference approximations 

provided in relations (3) , (4) and (5) into Eq. 

(6), then we get:  

             

                                                                   
(7) 

which can be written further as:                                 

                                                                                 
(8) 

Then,                                

         
                                                 (9) 

where  , , , and , 

with   and . Here, the 

superscript n indicates the quantity 

corresponding to a specific time level  and 

the subscripts  represent the value 

associated with the specific spatial mesh 

points ( , ). Let  represent the analytical 

solution at the grid point ( ), while  

denotes the corresponding approximate 

numerical value at the same grid point. This 

scheme enables the formulation of an 

algebraic system from which the numerical 

solution is then derived.  

Non-standard finite difference scheme 

To numerically solve the two-dimensional 

heat equation using the nonstandard finite 

difference method, we first derive discrete 

approximations for the partial derivatives. 

          (10)  

                                                           

(11) 

                                                           

    (12) 

where = k and   = h. 

Then, we can write the nonstandard finite 

difference scheme of the Eq. (1) as 

follows: 

                                                         
(13) 

The nonstandard finite difference scheme 

is  

     
(14)                                        

where , 

, 

, and , with   and 

. Here, the superscript n indicates 

the quantity corresponding to a specific 

time level  and the subscripts  

represent the value associated with the 

specific spatial mesh points ( , ). Let  

represent the analytical solution at the grid 

point ( ), while  denotes the 

corresponding approximate numerical 

value at the same grid point. This scheme 

enables the formulation of an algebraic 

system from which the numerical solution 

is then derived. 

Stability analysis of finite difference 

scheme  

Lemma (1): The scheme (9) exhibits 

conditional stability. 
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Proof. We employ Von-Neumann 

stability analysis to examine the 

scheme's stability through the following 

approach 

              

(15) 

where  are the mode numbers and  

represents the element size. By 

substituting Eq. (15) in Eq. (9) leads to 

                                 (16)                       

where g denotes the growth factor, from 

EQs. (16) and (9) we obtain 

                                                        
(17)      

                                                                        
(18) 

  

        (19)           

Now, we can prove that     

                                                                 

            

(20)         

                 (21)                                   

                         

Therefore                                                                

                                           (22)                            

Where   

Thus, the scheme is conditionally stable. 

Stability analysis of non-standard finite 

difference scheme 

Lemma (2): The scheme (14) exhibits 

conditional stability. 

Proof. We employ Von-Neumann stability 

analysis to examine the scheme's stability 

through the following approach 

                                                         (23) 

Where  are the mode numbers and 

 represent the element sizes. 

Now, substituting Eq. (23) into Eq. (14) 

leads to  

                                                         

                                  (24)                                                                 

where g denotes the growth factor, and 

from EQs. (24) and (14) we get   

                 

                                                                        
(25) 

          

                                                                         
(26) 

                                                                             

(27) 

Now, we can prove that 

| |                                         

                                                                (28)  

                                                                                                                                       

(29)    

                                    (30)   

Hence,                                                             

                             (31)                            

 

Where =    

 

Therefore, the scheme is conditionally 

stable. 
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Local truncation error of finite 

difference scheme 

Lemma (3): The local truncation error  

 of the scheme (9) is 

O  

Proof. To estimate the truncation error of 

scheme  (9), we perform a Taylor 

expansion. The local truncation error is 

given by: 

                                                            

(32) 

using Taylor’s series expansion, we get                              

                                                                         

(33) 

                  

                                                             
(34) 

                                                                      
(35) 

substitution from (33),(34)and(35) into (32)                

                                                             
(36) 

But is the solution of differential Eq. (1), 

so 

 
       (32) 

Therefore, the foremost term in the 

local truncation error is given by 

 

 
Then, the local truncation error is 

   

          (37)         

             

Local truncation error of non-Standard 

finite difference scheme 

Lemma (4): The local truncation error  

  of the scheme (14) is 

O  

Proof. To estimate the truncation error of 

scheme  (14), we perform a Taylor 

expansion. 

The local truncation error is given by: 

                                                          
(38) 

using Taylor’s series expansion, we get 

                                                                         
(39) 

                                                                       
(40)                             

                                                      
(41) 

substitution from (39), (40) and (41) into 

(38) 

                                                                        

(42)  
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But is the solution of differential Eq. (1), 

so 

 
Then, the local truncation error is 

                        

                                                        

                                                       (43) 

Numerical Results 

This section presents the numerical results 

for the two-dimensional heat equation 

using Test Problem (1). Both the FDM 

and NSFDM were employed to solve the 

partial differential equation, verifying 

the schemes' accuracy and 

computational efficiency. The absolute 

error, defined as the difference between 

the numerical and exact solutions, was 

used as a measure of accuracy. The results 

are summarized and presented in Tables 

[1–2]. 

Test Problem (1): 

The two-dimensional heat equation is 

expressed as 

Where  

The boundary conditions 

, , 

  

with initial conditions 

 
The analytical solution is: (Grema et 

al., 2022) 

 
Let use steps sizes h = 0.05, k = 0.0001, M 

= 5000, N = 20 and α = 1. Now, we use 

the FDM and the NSFDM to find 

numerical solutions for this example. 

 

 

 

Table (1): Analytical and numerical results at 

y=0.5 using FDM 

 

Table (1) gives the approximate solution 

for this example at y = 0.5 and its 

comparison to the analytical solution. 

Includes the absolute error. The maximum 

value of error for this example in the 

interval [0, 1] is         

 = 5.49258 ×  

 

 

 

         

Table 1: Analytical and numerical results at y=0.5 

using 

 

 

 

Fig. (1): The numerical outcomes and the 

analytical solutions by FDM at y=0.5 

 

 

 Analytical 

solution 

FDM Absolute error 

0 0 0 0 

0.05 8.09129×  8.17721×  8.59229×  

0.1 0.0000159833 0.0000161531 1.6973×  

0.15 0.0000234818 0.0000237312 2.49358×  

0.2 0.0000304021 0.000030725 3.22846×  

0.25 0.0000365738 0.0000369622 3.88384×  

0.3 0.0000418449 0.0000422893 4.44359×  

0.35 0.0000460857 0.0000465751 4.89392×  

0.4 0.0000491917 0.000049714 5.22375×  

0.45 0.0000510864 0.0000516289 5.42496×  

0.5 0.0000517232 0.0000522724 5.49258×  

0.55 0.0000510864 0.0000516289 5.42496×  

0.6 0.0000491917 0.000049714 5.22375×  

0.65 0.0000460857 0.0000465751 4.89392×  

0.7 0.0000418449 0.0000422893 4.44359×  

0.75 0.0000365738 0.0000369622 3.88384×  

0.8 0.0000304021 0.000030725 3.22846×  

0.85 0.0000234818 0.0000237312 2.49358×  

0.9 0.0000159833 0.0000161531 1.6973×  

0.95 8.09129×  8.17721×  8.59229×  

1 6.33426×  0 6.33426×  
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Table (2): Analytical and numerical results at y=0.5 

using NSFDM 

 

Table (2) gives the approximate solution for 

this example at y = 0.5 and its comparison to 

the analytical solution. Includes the absolute 

error. The maximum value of error for this 

example in the interval [0, 1] is         

 = 1.20921 ×  

 

In Figures [1, 2], for x [0,1] at y=0.5, the 

numerical results are represented by a 

black curve, while analytical solutions 

are shown as a red curve. We conclude 

that the analytical and numerical 

solutions obtained by NSFDM are very 

close, which gives more accuracy to the 

solution. 

 

 

 

 

 

 

 

Fig. (3): The numerical outcomes and the 

analytical solutions by FDM 

 

 

 

 

 

 

 

 

 

                                             

 

 

 

 

Fig. (2): The numerical outcomes and the 

analytical solutions by NSFDM at y=0.5 

 

 

 

 

 

 

 

Fig. (4): The numerical outcomes and the 

analytical solutions by NSFDM 

In Figures [3, 4], within the interval [0, 1], 

the numerical results are represented by a 

blue solid surface, while the analytical 

solutions are shown as a transparent surface 

with red mesh. We conclude that the 

analytical and numerical solutions obtained 

by NSFDM are very close, which gives more 

accuracy to the solution. 

 

 Analytical 

solution 

NS-FDM Absolute error 

0 0 0 0 

0.05 8.09129×  8.11021×  1.89162×  

0.1 0.0000159833 0.0000160207 3.73666×  

0.15 0.0000234818 0.0000235367 5.48969×  

0.2 0.0000304021 0.0000304732 7.10755×  

0.25 0.0000365738 0.0000366593 8.55039×  

0.3 0.0000418449 0.0000419428 9.7827×  

0.35 0.0000460857 0.0000461934 1.07741×  

0.4 0.0000491917 0.0000493067 1.15003×  

0.45 0.0000510864 0.0000512058 1.19432×  

0.5 0.0000517232 0.0000518441 1.20921×  

0.55 0.0000510864 0.0000512058 1.19432×  

0.6 0.0000491917 0.0000493067 1.15003×  

0.65 0.0000460857 0.0000461934 1.07741×  

0.7 0.0000418449 0.0000419428 9.7827×  

0.75 0.0000365738 0.0000366593 8.55039×  

0.8 0.0000304021 0.0000304732 7.10755×  

0.85 0.0000234818 0.0000235367 5.48969×  

0.9 0.0000159833 0.0000160207 3.73666×  

0.95 8.09129×  8.11021×  1.89162×  

1 6.33426×  0 6.33426×  
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The two-dimensional Wave equation 

The two-dimensional wave equation is a 

hyperbolic PDE, describing the propagation 

of waves in elastic media, such as sound 

waves, water waves, or vibrations in a 

membrane. It is solved using analytical 

methods for example, the separation of 

variables or using numerical methods, 

including finite difference, finite element, 

and spectral approaches. The two-

dimensional wave equation has many 

practical applications in physics, 

engineering, and other fields such as 

acoustics and sound propagation, vibrations 

in membranes and plates, electromagnetic 

wave propagation, computer graphics and 

animation. The two-dimensional wave 

equation takes the form: 

 

Where  

The boundary conditions 

, , 

  

with initial conditions 

, 

, 

The analytical solution is: (Daileda, 

2014) 

 
Finite difference scheme 

To numerically solve the two-dimensional 

wave equation using the finite difference 

method, we first derive discrete 

approximations for the partial derivatives. 

 

(44) 

   (45)                

    

(46)                            

       where = k and   = h         

The finite difference scheme of the Eq. 

(2) can be written as follows: 

   (47) 

By using the difference 

approximations provided in relations 

(44) , (45) and (46) into Eq. (47), then 

we get: 

                                                                       
(48) 

which can be written further as: 

                                                             
(49) 

where  , , , and 

, with   and   

Here, the superscript n indicates the 

quantity corresponding to a specific time 

level  and the subscripts  represent the 

value associated with the specific spatial 

mesh points ( , ). Let  represent the 

analytical solution at the grid point 

( ), while  denotes the 

corresponding approximate numerical 

value at the same grid point. This scheme 

enables the formulation of an algebraic 

system from which the numerical solution 

is then derived. 

Non-standard finite difference 

scheme 

To numerically solve the two-dimensional 

wave equation using the nonstandard 

finite difference method, we first derive 

discrete approximations for the partial 

derivatives.                                        

                                                                               

(50)    
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     (51) 

                                                                        

(52) 

where = k and   = h. The 

nonstandard finite difference scheme of 

the Eq. (2) can be written as follows: 

    (53) 

By using the difference 

approximations provided in relations 

(50) , (51) and (52) into Eq. (53), then 

we get: 

                                                                     

(54) 

which can be written further as: 

               

                                                          
(55) 

where  , 

, 

, and , with   and 

. Here, the superscript n indicates 

the quantity corresponding to a specific 

time level  and the subscripts  

represent the value associated with the 

specific spatial mesh points ( , ). Let  

represent the analytical solution at the grid 

point ( ), while  denotes the 

corresponding approximate numerical 

value at the same grid point. This scheme 

enables the formulation of an algebraic 

system from which the numerical solution 

is then derived. 

Stability analysis of finite 

difference scheme  

Lemma (5). The scheme (49) exhibits 

conditional stability. 

Proof. We employ Von Neumann 

stability analysis to examine the 

scheme's stability through the following 

approach                                           

  (56)    

where  are the mode numbers and 

 represents the element size. 

By substituting Eq. (56) into Eq. (49) 

leads to 

                              (57)                     

where g denotes the growth factor, 

from EQs. (57) and (49) we get 

                                     

          (58)                                               

We assume that the roots of equation are 

 and . Now, we can prove that  

                               

      (59)  

   

     

(60)     

That is,   cannot be a 

negative quantity, that is the 

inequality (59) leads to and this 

is true to satisfy the inequality (60)     

             (61)   

Therefore 

   

             (62) 

 

Then the equation (58) can be written 

as 

 
 

                     (63)               
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Where 

= , 

thus yields .  

Thus, the scheme is conditionally stable. 

Stability analysis of non-standard 

finite difference scheme 

Lemma (6): The scheme (55) exhibits 

conditional stability. 

Proof. We employ Von Neumann 

stability analysis to examine the 

scheme's stability through the following 

approach                             

                                                                     

(64) 

Where  are the mode numbers and 

 represent the element sizes. Now, 

substituting Eq. (64) into Eq. (55) 

leads to 

 

                        (65)                         

where g denotes the growth factor, 

and from EQs. (65) and (55) we get 

                                                               

(66) 

We assume that the roots of equation 

are  and . Now, we can prove that 

|

|                                                              

(67) 

                   

                                                     (68) 

Hence,       

                         

(69) 

 

Then the equation (66) can be written 

as 

              

    

                        (70) 

 

Where 

=

, 

thus yields . 

Therefore, the scheme is conditionally 

stable. 

Local truncation error of finite 

difference scheme 

Lemma (7): The local truncation 

error   of the scheme (49) is 

O  

Proof. To estimate the truncation error of 

scheme (46), we perform a Taylor 

expansion. The local truncation error is 

given by: 

 
                                                         (71) 

using Taylor’s series expansion, we get 

                                                         
(72)         

                              
(73)               
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                                 (74) 

substitution from (72), (73) and (74) 

into (71) 

 

…                                                  (75) 

 

But is the solution of differential Eq. 

(2), so 

 
Therefore, the foremost term in the 

local truncation error is given by 

 Then, the local truncation error 

  

     (76)   

Local truncation error of non-

standard finite difference scheme 

Lemma (8). The local truncation 

error    of the scheme (55) is 

O  

Proof. To estimate the truncation error of 

scheme (55), we perform out a Taylor 

expansion. The local truncation error is 

given by: 

                                                             
(77) 

using Taylor’s series expansion, we get                           

                                                          
(78)                    

                                                        
(79)                

                                                         
(80) 

substitution from (78), (79) and (80) 

into (77) 

                  
(81) 

But is the solution of differential Eq. 

(2), so 

 

 
Therefore, the foremost term in the local 

truncation error is given by 

 

  

 

 

 

Then, the local truncation error is 

 

     (82)  

Numerical Results 

This section presents the numerical 

results for the two-dimensional wave 

equation using Test Problem (2). Both 

the FDM and NSFDM were employed to 
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solve the partial differential equation, 

verifying the schemes' accuracy and 

computational efficiency. The absolute 

error, defined as the difference between 

the numerical and analytical solutions, 

was used as a measure of accuracy. The 

results are summarized and presented in 

Tables [3–6]. 

Test Problem (2): 

The two-dimensional wave equation is 

expressed as 

                                                          
              Where  

The boundary conditions 

, , 

  

with initial conditions 

, 

, 

The analytical solution is: (Daileda, 

2014) 

 
Let use steps sizes h = 0.05, k = 0.0001, 

M = 500, N = 20 and c = 1. Now, we use 

the FDM and the NSFDM to find 

numerical solutions for this example. 

Table (3):  Analytical and numerical results at 

y=0.5 using FDM 

 

Table (3) gives the approximate 

solution for this example at y = 0.5 

and its comparison to the analytical 

solution. Includes the absolute error. 

The maximum value of error for this 

example in the interval [0,1] is 

= 0.000099119 

 

 

 

 

                                                                   

 

 

 

Fig. (5): The numerical outcomes and the 

analytical solutions by FDM at y=0.5 

 

Analytical 

solution 

FDM Absolute error 

0 0 0 0 

0.05 0.15259 0.152606 0.0000155057 

0.1 0.301424 0.301454 0.0000306297 

0.15 0.442835 0.44288 0.0000449994 

0.2 0.573342 0.5734 0.0000582611 

0.25 0.689731 0.689801 0.0000700882 

0.3 0.789137 0.789217 0.0000801896 

0.35 0.869112 0.8692 0.0000883163 

0.4 0.927686 0.927781 0.0000942685 

0.45 0.963418 0.963516 0.0000978994 

0.5 0.975427 0.975526 0.0000991197 

0.55 0.963418 0.963516 0.0000978994 

0.6 0.927686 0.927781 0.0000942685 

0.65 0.869112 0.8692 0.0000883163 

0.7 0.789137 0.789217 0.0000801896 

0.75 0.689731 0.689801 0.0000700882 

0.8 0.573342 0.5734 0.0000582611 

0.85 0.442835 0.44288 0.0000449994 

0.9 0.301424 0.301454 0.0000306297 

0.95 0.15259 0.152606 0.0000155057 

1 1.19455×  0 1.19455×  
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Table (4):  Analytical and numerical results at    

y=0.5 using NSFDM 

 

 Table (4) gives the approximate solution 

for this example at y = 0.5 and its 

comparison to the analytical solution. 

Includes the absolute error. The 

maximum value of error for this example 

in the interval [0, 1] is 

                        = 0.0000787987  

Fig. (6): The numerical outcomes and the 

analytical solutions by NSFDM at y=0.5 

 

In Figures [5, 6], for x [0,1] at y=0.5, 

the numerical results are represented 

by a black curve, while analytical 

solutions are shown as a red curve. We 

conclude that the analytical and 

numerical solutions obtained by NSFDM 

are very close, which gives more 

accuracy to the solution. 

Fig. (7): The numerical outcomes and the 

analytical solutions by FDM 

 

Fig. (8): The numerical outcomes and the 

analytical solutions by NSFDM 

In Figures [7, 8], within the interval [0,1], 

the numerical results are represented by a 

blue solid surface, while the analytical 

solutions are shown as a transparent 

surface with red mesh. We conclude that 

the analytical and numerical solutions 

obtained by NSFDM are very close, 

which gives more accuracy to the 

solution.  

   
Analytical 

solution 

NS-FDM Absolute error 

0 0 0 0 

0.05 0.15259 0.152603 0.0000123268 

0.1 0.301424 0.301448 0.0000243501 

0.15 0.442835 0.44287 0.0000357739 

0.2 0.573342 0.573388 0.0000463167 

0.25 0.689731 0.689787 0.0000557191 

0.3 0.789137 0.789201 0.0000637495 

0.35 0.869112 0.869182 0.0000702101 

0.4 0.927686 0.927761 0.000074942 

0.45 0.963418 0.963496 0.0000778285 

0.5 0.975427 0.975506 0.0000787987 

0.55 0.963418 0.963496 0.0000778285 

0.6 0.927686 0.927761 0.000074942 

0.65 0.869112 0.869182 0.0000702101 

0.7 0.789137 0.789201 0.0000637495 

0.75 0.689731 0.689787 0.0000557191 

0.8 0.573342 0.573388 0.0000463167 

0.85 0.442835 0.44287 0.0000357739 

0.9 0.301424 0.301448 0.0000243501 

0.95 0.15259 0.152603 0.0000123268 

1 1.19455×  0 1.19455×
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In case of k=0.01 and h=0.05. 

Table (5): Analytical and numerical results at 

k=0.01 and y=0.5 using FDM 

 

 

Fig. (9): The numerical outcomes and the       

analytical solutions at k=0.01 and y=0.5 by FDM 

 

 

 

Table (6): Analytical and numerical results 

at     k=0.01 and y=0.5 using NSFDM 

 

 

 

 

 

Fig. (10): The numerical outcomes and the 

analytical solutions at k=0.01 and y=0.5 by 

NSFDM 

 

 

 Analytical 

solution 

FDM Absolute error 

0 0 0 0 

0.05 0.15259 0.153362 0.000771567 

0.1 0.301424 0.302948 0.00152414 

0.15 0.442835 0.445074 0.00223918 

0.2 0.573342 0.576241 0.00289908 

0.25 0.689731 0.693219 0.0034876 

0.3 0.789137 0.793127 0.00399024 

0.35 0.869112 0.873507 0.00439463 

0.4 0.927686 0.932377 0.00469081 

0.45 0.963418 0.96829 0.00487148 

0.5 0.975427 0.980359 0.00493221 

0.55 0.963418 0.96829 0.00487148 

0.6 0.927686 0.932377 0.00469081 

0.65 0.869112 0.873507 0.00439463 

0.7 0.789137 0.793127 0.00399024 

0.75 0.689731 0.693219 0.0034876 

0.8 0.573342 0.576241 0.00289908 

0.85 0.442835 0.445074 0.00223918 

0.9 0.301424 0.302948 0.00152414 

0.95 0.15259 0.153362 0.000771567 

1.0 1.19455×  0 1.19455×  

 Analytical 

solution 

NS-FDM Absolute error 

0 0 0 0 

0.05 0.15259 0.15336 0.000769115 

0.1 0.301424 0.302943 0.00151929 

0.15 0.442835 0.445067 0.00223206 

0.2 0.573342 0.576232 0.00288987 

0.25 0.689731 0.693208 0.00347651 

0.3 0.789137 0.793115 0.00397756 

0.35 0.869112 0.873493 0.00438066 

0.4 0.927686 0.932362 0.0046759 

0.45 0.963418 0.968274 0.004856 

0.5 0.975427 0.980344 0.00491653 

0.55 0.963418 0.968274 0.004856 

0.6 0.927686 0.932362 0.0046759 

0.65 0.869112 0.873493 0.00438066 

0.7 0.789137 0.793115 0.00397756 

0.75 0.689731 0.693208 0.00347651 

0.8 0.573342 0.576232 0.00288987 

0.85 0.442835 0.445067 0.00223206 

0.9 0.301424 0.302943 0.00151929 

0.95 0.15259 0.15336 0.000769115 

1.0 1.19455×  0 1.19455×
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Fig. (11): The numerical outcomes and the 

analytical solutions at k=0.01 by FDM 

Fig. (12): The numerical outcomes and the 

analytical solutions at k=0.01 by NSFDM 

Conclusion   

In this paper, the exact and numerical 

solutions for Test Problems 1 and 2 are 

presented using the proposed methods. 

By comparing the finite difference 

method with the non-standard finite 

difference method, we conclude that the 

non-standard finite difference method 

achieves higher accuracy. The absolute 

error analysis demonstrates that our 

method provides a reliable 

approximation for solving the two-

dimensional heat and wave equations 

using the finite difference approach. 

Additionally, the stability analysis of 

both methods, conducted using Von-

Neumann theory, reveals that they are 

conditionally stable when applied to the 

two-dimensional heat and wave 

equations. 
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دالمحاكاة العددية للمعادلات التفاضلية الجزئية ثنائية الأبعا  

 عبد المقصود عبد القادر سليمان1، كمال رسلان محمد رسلان2، خالد كرم2، أحمد صبيح عواد1*

 1قسم الرياضيات، كلية العلوم، جامعة العريش، مصر

 2قسم الرياضيات، كلية العلوم، جامعة الأزهر، مصر

هذه الورقة مخصصة لتطوير مخططات جديدة لحل معادلة الحرارة ثنائية الأبعاد ومعادلة الموجة ثنائية الأبعاد 

حليل الاستقرار للمخططين وتوفير بطريقة الفروق المحدودة وطريقة الفروق المحدودة غير القياسية. تمت مناقشة ت

تأكيد اتساقهما وتقارب شروط استقرار مشروطة. تم حساب أخطاء الاقتطاع المحلية لكلا المخططين، وبالتالي 

المخططين. تم الحصول على نتائج عددية لحالتين اختبار مختلفتين لكل معادلة ومقارنتها بالحلول الدقيقة والنتائج 

العددية الأخرى التي تكشف عن الأخطاء المطلقة وتولد جداول التقارب. تظُهر النتائج الرسومية السلوك المكاني 

يد على فعالية المخططات المقدمة. عندما نقارن طريقة الفروق المحدودة بطريقة الفروق والزماني للحلول، مع التأك

المحدودة غير القياسية، فإن تقنية طريقة الفروق المحدودة غير القياسية تتفوق على الأخيرة من حيث التخفيف من 

متعددة الأبعاد مع الحفاظ على الدقة الآثار الرقمية. تقدم هذه الورقة منهجية شاملة لحل معادلات التفاضل الجزئي 

النظرية )الاستقرار، وتحليل الأخطاء( والتحقق العملي )المعايير العددية(، مع تطبيقات في الفيزياء الحسابية 

 .ةوالهندس

 


