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KEY WORDS ABSTRACT

Membership Accurately quantifying the relationships between conditional and

function, degree of decision attributes is crucial for information systems to make well-
similarity, informed decisions. This work presents a novel approach to verifying
information class membership using Similarity Rough Set Theory (SRS) and a
system, uncertain unique symmetry-based point of view. We apply SRS to model
idea, and similarity attribute interactions and their impact on overall class membership in
connection. detail. For determining the membership degree, two methods are
provided: one that depends on individual attribute and the second
method takes all attributes into consideration. The efficiency of the
proposed work with respect to the existing one is clarified by
presenting a case study of higher education university information
system. The results illustrates that the membership degrees obtained by
individual and aggregated attribute are effective methods, indicating a
good relations of class membership. In addition, it shows the practical
effectiveness of the proposed technique by applying it on a large
dataset of academic student marks. This work contributes in evaluating
and verifying the class membership for more informed decision in the

real-life applications.
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Introduction

Rough Set Theory (RST) is widely applied
in handling data for various real-life
applications, including rule extraction,
knowledge discovery, and decision-making
(World Health Organization, 2022).
Recently, RST has seen significant
advancements, along with a growing need to
analyze and process large and complex
datasets (Pawlak, 1991; Yao, 2018). It is
regarded as a powerful tool for managing
uncertainty in data, particularly within
information systems.

However, traditional applications of RST
are constrained by their reliance on
equivalence relations. To address these
limitations, numerous extensions of RST
have been developed, utilizing binary or
alternative types of relations. In 1998, Yao
introduced methods that led to the
development of various interpretations of
rough sets based on different relations,
including reflexive (Abo-Tabl and El-
Bably, 2022). Similarity (Abo-Tabl, 2013;
Dai et al., 2018) tolerance (Skowron and
Stepaniuk, 1996), general relations (Abu-
Gdairi et al., 2021; El-Gayar and Abu-
Gdairi, 2024) and topological approaches
(El-Bably et al., 2024; El-Gayar et al.,
2023; El-Gayar and EI Atik, 2022;
Hosny et al., 2024). RST applications have
been explored in a variety of fields (Abu-
Gdairi and EIl-Bably et al., 2024; ElI-
Bably et al., 2023; Abu-Gdairi et al.,
2023; Taher et al., 2024a; Taher et al.,
2024Db). Similarity Rough Set Theory (SRS),
an extension of RST, integrates similarity
measurements into information frameworks,
enabling a more flexible approach to
modeling relationships between classes and

(Hu et al., 2020; Zhang and Miao, 2004).
Some key advantages of SRS in data-driven
environments include:

e Membership Determination: SRS
provides an efficient method for estimating
membership degrees for classes, thereby
enhancing decision-making capabilities (Yao,
2021).

e Enhanced Data Analysis: SRS enables
comprehensive analysis by capturing intricate
relationships within complex and large data
structures in information systems (Zhang,
2020).

e Performance: SRS evaluates individual
contributions of class elements with nuanced
assessments, resulting in  improved
performance and accuracy (Wu et al., 2023).
This paper contributes to information system
analysis and decision-making through the
following methods:

1. Developing a framework that offers a
more accurate representation of attribute
relationships compared to existing techniques.
2. Applying two membership calculation
strategies:

o Focus on individual attribute symmetry.

o Consider the collective symmetry of all
attributes.

This provides users with a flexible approach
to select the best method based on the data’s
characteristics.

3. Conducting a comprehensive case study to
demonstrate the framework's effectiveness.
Specifically, we showcase how the proposed
framework outperforms existing methods in
identifying student performance levels within
a university development information system,
highlighting its  practical utility and
robustness.

data points (Liu et al., 2022; Yao, 2003).
SRS offers a more specialized and effective
method for analyzing large datasets, where
traditional RST techniques may fall short

The broader implications of this research
extend beyond student performance analysis.
Our framework is a versatile tool for evaluating
and improving information systems across



Validation of Class Membership Degree in Information Systems using Similarity Rough Theory 3

various domains, including healthcare, finance,
manufacturing, and e-commerce. By equipping
decision-makers with a clearer understanding
of attribute relationships, this research
facilitates more informed choices, enhanced
system performance, and better outcomes
across diverse applications.
The remainder of this paper is organized as
follows:
« Section Il discusses relevant literature and
preliminaries.
o Section Il introduces a novel dissimilarity-
based approach  for validating class
memberships in information systems.
« Section IV presents a case study analyzing
student grade data to evaluate the effectiveness
of the proposed approach.
Section V concludes the paper and outlines
future work.
PRELIMINARIES
Definition 11.1 (Yao, 1998) Let U be the
universe set and an equivalence relation S € U
x U. Let A be a subset of U. Let S (x) be the
equivalence class on U. The lower and upper
approximations of A are given as:

st =| Jsers@ ea

xEA

sTA) =] |s(x):S5(x)nA=0
U

54(4) c A c 57(4)

Boundary region of A

BN (A)= 57(4)—5'(4)

BN(4)= {513}
The pair 5(4),57(4) is called a rough set.

Example 11.1:
Table (1) contains IS data about 20 students,
including their grades in coursework, midterm
exams, final exams, and their final overall
grade.
U ={51,52,53,54,55,56,57,58,59,510, 511,512, 513,
514,515, 516,517, 518,519,520}

U/s = {{51},{52},{53},{54},{55,513}, {S6},{57}, {58},

{59}, {510}, {511,515}, {512}, {516},{517}, {518,519}, {520}}
X ={52,53,54,55)

54(4) ={52,53,54},

57(A) ={52,53,54 55,513}

Boundary region of A:

BN (A)= 57(4)—5'(4) = {55,513}

The pair 5*(4),57(4) is called a rough set.

Figure (1) illustrates the rough set and
boundaries.

S

St (A)

S13 BN

Sht (A

S$1,56,57,58,59,510,S11,S12,514,

S$15,516,517,518,519,S20

Fig. (1): Rough set and Boundaries

Table (1): IS data about 20 students

Student D Comsework Midtrm | Final Fram | Fimal Grade
5l D F C D
8 A 4 A A
5] A B A A
84 L A A A
55 ¢ A L A
56 D C C C
87 A C A B
8 D A B ¢

Definition 11.2 (Skowron and Rauszer,
1992): Let an information system, denoted
as IS = (U, A), is a tuple consisting of:

U: A non-empty finite set of objects called
the universe. This represents the entities or
data points within the system.
U=1{51,52,53,54, ...... ,5n}

A: A non-empty finite set of attributes
called the attribute set. These are the
features or characteristics used to describe
the objects in the universe.

V: The set Va is called the value set of a
such that U - Va, a € A. The set of
attributes can be classified in two subsets C
C Aand D = A— C where:



C: A subset of A called the conditional
attribute set. These are the attributes used to
predict or categorize the objects in the
universe.
D: The complement of C in A, also called
the decision attribute set. This is the
attribute or set of attributes that represent
the target variable or class labels of the
objects.
Example 11.2:
For our IS data that illustrates in Table (1),
U ={ 51,52,53, 54,55, 56,57, 58,59, 510,511,512,513,
514,515,516,517,518, 519,520}
A = {Coursework, Midterm, Final Exam,Final Grade}
C = {Coursework, Midterm, Final Exam}
D = { Final Grade]
Definition 11.3. (Pawlak, 1998) Assume IS
= (U, A) is an information system and ¢ # S
C U. The Rough membership function for
the set X'is
pa(s)= Il N ST 0 S| forsomes €U

[5]x
Example 11.3. Let IS = (U, X) be an
information system that shown in Table (1).
Let
U = { 51,52,53, 54,55, 56,57, 58,59, 510,511,512,513,
514,515,516,517,518, 519,520}

X =1{5253,5455) | ot the students who
has final grade “A”

Bl=={c, A C} this is the chosen
conditional attributes such that coursework
“C”, Midterm “A”, and Final Exam “C”.

Repeat for sl ={F F, F}
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things, let’s say that ak attributes for two
elements (i,j) described by aki, akj. Matches
for these two objects define the degree of
dissimilarity between them:

1 ,if n‘ki;tﬂ‘kj

Syii(tppty;: )= :
m;[ﬂm akj] {ﬂ Jf Qg = @y
Example 11.4. For S11 and S12 in Table (1),

we can calculate the similarity between these
two students as follows:

Student 1D Coursework Midterm Final Exam Final Grade
gl C A D B
212 C B D C
Student 1D 511 512
511 3 2
512 2 3

MEMBERSHIP BASED ON SIMILARITY
This objective of this paper is to generate a
matrix that represents the dissimilarity
relation using different attribute choice sets,
and then use the dissimilarity degrees to
generate a membership function for scenarios
involving multi-class scenarios.

Definition 111.1

Let us define

1- For given IS data U
U ={51,52,53,54, u s, SN}

2- The attribute set.

3- The selected attribute decision set
AS’ — {ﬂLﬂ«?« ﬂ.?l', ------ JEK}

1=K=M
4-  The dis-similarity relation between

| {55,513} N [52,53,54,55})] 1
X _ — —
us (55) = {55,513) -2

For Bla={F F F}, it is the chosen
conditional attributes such that coursework
“F”, Midterm “F”, and Final Exam “F”’.

| (518,519} n {52,53,5455)| _

us (518) = {518,519}

Definition 11.4 (Rico et al., 2022): To
calculate the dissimilarity between the two

two elements (i,j) for certain attribute (k).
O (B Qi)

5- The total dis-similarity weight

between the elements (i,j) for the

selected attributes decision set

K
&5, 5) = Z Bl @ Qg) PE
k=1

6- The information class set that the
rough membership function will be
calculated

X ={51,53,... .. , SN}



Such that {5153, ..., SN} are common
in certain decision attribute.

7- The membership function of the
class X based on the total dis-similarity
weight values for each element in
information system
zsi & Xn B(5) w(5,51)
zsieﬂ[ﬂ N{S,Si)

Case study Evaluation

In this section we will apply and enable
informed decision-making through accurate
membership degree function calculation by
using the novel dis-similarity-based method
for validating element class membership in
information systems.

Example IV.1

Regarding the data system depicted in Table
1, we have 20 student data set U:

U = {51,52,53,54,55,56,57,58,59,510, 511,512, 513,
514,515,516,517, 518,519, 520}

With set of attributes

A = {Coursework, Midterm, Final Exam,Final Grade}
Case (1) Individual Attribute Membership
Degree Evaluation

For each individual attribute decision
set, we calculate its dis-similarity matrix to
obtain the membership function of certain
class set. We firstly will apply the selected

attribute decision set for first attribute such
that: Ag = {coursework}

Hy = S+ 50

Attribute Dis-similarity Matrix Calculation:
We create a matrix that captures the dis-
similarities between an attribute. This
matrix quantifies how different attributes
are from each other, providing a foundation
for membership function evaluation. Table
(2) shows coursework dis-similarity matrix.
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Table (2): Coursework Dis-similarity Matrix

510
51
513
51
51
516
517

D | B B B F B B H RS

511

518

518

520

51

52

52

54

55

56

57

3]
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510

511

512

512

514

515

518

517

518

A |a |a @ |a|a|lafa|a|a|a|jg | (@ |a [ |a |2 |a
| | |8 || |a (a2 e |e e e e |a a2 e
o |k |=w =B (=28 |8 |80 = E == e (e |a |- |-

518

a | (a|e (e (e e A e (e (a e | |a e | |=
| || [(a e |a e |a | |a (e (a|e o |a|a ]| |8 |2
- | (a | (a|e|(a e || |8 |(=a (e |a|ae | |=a = |
a | (| e o e e (o oo |a k|| o e |2 (aa
A |a |ja|leg |(a|a|a|a|a|a |a|a|(a|le (2] |2 |le a6 |
a | [ |a|a || |a e | e e |2 (e |2 |a a4 e
- e (e e (e e |aa |a e e (e (e | |a e e |a |- e
- | (a | (a|e|(a e || |8 |(=a (e |a|ae | |=a = |
a | (| | |o|a|o (oo |0 |a|a|a (oo | (a4 a
LT T =T - S - T - - - T - T - T T - P P - T - T = P T
[ T I O - o o e T e T I T T I - T N Y R - - T Y
w | [ | | |o e e (oo o ek |a (e |je oo (aa
[ T I O o O o T e A I T O - T 'R - T O R T I A 1.
A |a |ja|leg |(a|a|a|a|a|a |a|a|(a|le (2] |2 |le a6 |

520

=
=
-

a2 e |0 |= |(a|la |a|a|a|a (@ |6 (= [ ||| |a (@ ]a

= o o |= (@ @ & |a|a|a (@ |6 (@[ | |2 |2 |a(a]a

O (=2 & |k (@ |la & |a|a|a (@ | (||| |a|a(a]a

Using the dis-similarity matrix, we get:
U(S] = {m: J(ﬂ.ﬁ.ﬂ-kj]} = A

We select classes in multiple ways based on

the significance of &

Secondly will apply the selected attribute
decision set for second attribute such that:
Ag = {Midterm}

Table (3) shows the Midterm dis-similarity
matrix for all elements in Table (1).

Third, we will apply the selected attribute
decision set for third attribute such that:

A = {Final Fxam}

Table (4) shows the final
similarity matrix for all elements.
Now based on Definition 111.1 we calculate
proposed membership degree and Pawlak’s
degree for each attribute dis-similarity

matrix individually for 2=1 and the
selected information class set X is the

students who has final grade “B” such that:
X = {57,511, 513}

exam dis-




Table (3): Midterm Dis-similarity Matrix
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- . b
I P I - I S I I T - - B - - Table (5): The Membership Degree and Pawlak’s
- Degree for each attribute Dis-similarity Matrix
of 1111l 1|11 1111111 1]0|0le]|o RN
52 |1/ 0|1 0|0/ 1100|101 0l1]0le|1]1]1]1 |nd|V|duaIIy
52 | qlq)lelalalalalaa]lal1elala]a]a]a]q]q]1
5 4/ 0|1 0|0 1) 100|101 o h|o/a|1]1]1]1 Coursework Midterm Final Exam
55 | 1/ 0| 1) o/ 0l 1] 1| 0| 0| 1| 0| 1| o] 1| o] & 1] 1| 1| 1
6 | ql a1 a1 o]l el 11|11l 1] 1] 1] 1] D T T T
Sl qla)la a1 elelala]lalalalala]a]a]a]q]a]a g g g
58 1| o 1| o] of 1| 1| 0| o] 1| 0| 1| of 1| o] o] 1| 1] 1| 1 o o o
5 | 1| 0| 1| o] 0| 1| 1| 0| o] 1| 0| 1| 0| 1| o] @] 1| 1| 1| 1
10 51 019 0.15 0.2 0.15 0.14 015
alalalalal a1l ] af el a2l 1] el 1] 1] 1] 1] 1]
o 52 0.13 0.15 0.09 0.15 0.13 015
1 0/ 1 0/ o/ 11 0] of1]0] 10|10 0|1 1]1]1
53 0.13 0.15 017 0.15 0.13 0.15
RIEIEEIRIRIEIR IR I I EIE IR IR IR IEIEIE a . 015 0.09 015 04T 015
S | 1le/1/ 00 1]1/0 0 1010 100 1111 55 n:us 0:15 n:oa 0:15 0:14 0:15
S al a1l alal a2l 11| el a1 a]e] 11| 1]] 1] 56 019 015 011 015 014 015
S5 | 1) 0/ 1 0/ 0/ 1|10/ 0]1 010|100 1]1]1]1 57 043 015 044 015 0142 045
5% | q) o/ 1 0/ o/ 1|10/ 0|10/ 10|10 el1]1]1]1 58 018 015 0.09 015 016 0.15
ST ol 2l ol a1l 1l a2l a1 1] 1]1]1]1]00e]|o0 59 018 0.15 0.09 0.15 0.14 015
58 | o) a1 1) 1l a2l 2l a1l 1/ 1] a1 1/ 1] 0| 0|la]|e 510 0.08 015 047 0.15 0.14 015
519 | ol 4l 4l 1l 1l 4l 4l 2l 4|l 1] 4| 1| 1| 1| 1| 1| o| o] ol o 511 0.08 0.15 0.09 0.15 0.14 015
520 | of 4l 4l al 2l al 2l 4l 4l 4l 2l ol 2] 2l 4] 1] | o] o] o 512 0.08 0.15 017 0.15 0.14 0.15
513 0.08 0.15 0.09 0.15 0.14 015
514 0.13 0.15 017 0.15 0.14 015
Table (5) shows the membership degree and 515 0.08 015 0.09 015 014 015
, . . 516 019 0.15 0.09 0.15 0.14 015
Pawlak’s degree for each attribute dis- s17 012 015 02 015 0AE 015
similarity matrix individually and illustrates S18 018 015 02 015 0.18 015
) 518 0.8 0.15 0.2 0.15 0.18 015
how our proposed method is accurate s20 016 015 02 015 014 015
compared with Pawlak’s degree that

displays same value along all data elements.

Table (4): Final Exam Dis-similarity Matrix

o | & H 8 3 8 R s B BB E R EEE S
SU ol a1/ 1) elela[1]1]el1]1]e]1] 10|11
S2 | q| ol ol o1 of 1l af a1 a]a[1] ]
S3 | 1| ol of o| 1| 1| of 1| 1| 2| 4| a| 1| 1| | 1] 1| 1] 2| 1
S4 | q| o of o| | 1| of 1| 1| 2| | a| 1| 1| | 1] 2| 1] 2| 1
S5 | ol 4| 1| 1| o] 0| 1| 1] 1] o] 1| 1| o] 1| 1| 0] 1| 1] 1| 1
SE | o| 1| 1/ 1| o] 0 1| 1] 1| o 1| 1| o] 1| 1| 0] 1| 1] 1| 1
ST | 1| ol ol 0| 1| 1| of 1| 1| 1 1| 2l 1| 1| | 1] 1] 1] 1|
ARIERRIEIRIRIENRIRIRIEIRIRIRIRIRIRIRIE
Sl af 11|11 10| 1|00 1|00 1|11 e
S0 ol ql 1/ 1) 0|0l 1110l 1] e]1]1]0e]1]1]1]
S gl a1 11111 e]1[e]lo1]e/e]1]1]1 10
S2 | ql a1l 1111 e] 10|l ol 1]elef1]1]11]0e
S13 | ol 1| 1| 1| 0| o] 1| 1| 1] o] 1| 1| o 1| 1| of 1| 1| 1] 1
S4 0 q| a| 1| 1| 1| 1] 1]/ 1] 0|/ 1| o] o] 1| 0| 0] 1 1| 1] 1] 0
S50 q) al 1) 1] 4|1/ 1| 1] o] 1| o] o] 1] 0 0] 1| 1| 1| 1| @
S16 | o) 1| 1/ 1| o/ 0 1| 1| 1] o 1] 1| o] 1| 1| 0] 1| 1] 1| 1
ARIRIRIRIEIRIRIRIRIRIRIRIRIRIRIRIN I K INIE
S gl alal a1l af a1 1] 1] 1] 0] e 0] 1
S19 0 q| a| 2| a| 2| 1] 1| 1| 1] 1| 1| 1| 1| 1| 1| 1| o] 0| 0] 1
S0 | q| 4| 1| 1| 1| 1] 1/ 1] 0| 1| o] o] 1| 0| 0| 1| 1| 1| 1] 0

Case (2) Aggregated Attributes Membership
Degree Evaluation

We will apply the selected attribute decision
set for all attribute such that:

A = {Coursework, Midterm, Final Exam}

Table (6) shows all attributes dis-similarity
matrix for all elements in Table (1).

Based on Definition I11.1 we calculate
proposed membership degree and
Pawlak’s degree for all attribute dis-

similarity matrix for 4=3 and the
selected information class set X is the
students who has final grade “B” such
that:
X ={57,511,513}

Compared to earlier approaches, the idea
presented in this paper offers a new way
to find the function of membership by
calculating the average of degrees of
symmetry by either individual attribute or
by all attributes. This approach results in
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more accurate approximation evaluation
and decision-making.

_ Bew t Byr T HEN
P"Aua-ruga - 3

Table (6): All attributes Dis-similarity Matrix

o | @ BB 3886 B85S
$1 | o] 3| 3| 3| 2] 1] 3/ 2] 3| 2332|331 2]=20=2]=2
52 |3l o)1 1 2[3[1]2 2[3]2]3[=2]22 2|23 3|3
$2 | 3| 1| ol 2| 3| 2[1] 32|33 2323232323
$4 | 3| 1| 2| ol 1| 3| 2| 2| 2] 2| 1] 2[ 1] 3[ 1] 2| 3| 3| 3] 3
S5 | 2| 2| 3/ 1ol 2[ 3] 2] 2[1]1] 2[ 0] 3[1] 1] 3] 3] 3]s
S6 | 1| 3| 3|3/ 2|0 2| 22232233133 2|3
ST | 3| 1| 1| 2| 3/ 2[ 0] 3] 3|33 2]3]|2]3 3|23 3|3
S8 | 2| 2| 3| 2| 2| 2[ 3] 0 2] 3] 2] 3[ 2] 32133 3|3
59 | a| 2| 3| 2| 2| 3] 3| 2| of 3| 1| 2 2| 2[ 1] 2| 3| 2| 2| =2
S0 2] 3| a[ 2[ 1] 2[ 3| 3] 2o 2] 2[1]2[2]2]3 3 3|3
S | 3] 2/ 3/ 1/ 1] 3| 3/ 21 2[0] 1] 1] 2[0] 2] 3]3]3]2
512 | 3| 3| 2| 2| 2| 3| 3/ 3] 2 2] 1] 0] 2| 2[ 1] 3] 3] 3] 3] 2
$3 | 2] 2| a[ 1] o] 2[ 3| 2[ 2[ 1] 1] 2[ o] [ 1] 1] 3| 3| 3| 3
514 | 3| 2| 2| 3/ 3| 2| 2/ 3] 2| 2[2]=2]3/0] 2 3| 2]3]z2]2
515 | 3] 2 3/ 1/ 1] 3| 3/ 2{ 1] 2] 0] 1] 1| 2] o] 2] 3] 3] 3] 2
$16 | q) 2| a[ 2[ 1| 1| 3{ 1] 2[ 2| 2[3[ 1] 3[2] 0] 33 3|3
$7 | 2| 2| 2[ 3| 3| 2[ 2| 3] 2[ 3| 3] 2] =2[=2[3]3]0 112
518 | 2] 3| 3| 3/ 3] 3| 3/ 3] 2| 3/3 3323 310 0]2
$19 | 2| 3| 3| 3] 3] 3[ 3| 3] 2[ 3| 3] 3] 3] 3[3 310 0] 2
S0 | 2| 3| a[3[3/=2[3]3]2[3=2]2[32[2322 2|0

Table (7): The Membership Degree and Pawlak’s
Degree for all attribute Dis-similarity Matrix.

All Attributes
D Proposed Pawlak
51 0.18 0.15
52 0.12 0.15
53 044 0.5
54 04 0.5
55 044 0.15
56 0.15 0.15
57 0.2 0.15
58 0.15 0.15
59 0.14 0.15
810 042 0.5
811 044 015
512 043 0.15
512 041 0.15
44 0.5 0.15
515 041 0.15
516 0.15 0.15
7 047 0.15
S48 018 0.15
519 018 0.15
520 047 0.5

By comparison between calculated average
membership degree for individual attributes
in case 1 and calculated membership degree
for all attributes case (2) we found that they

are approximately equal as shown below in

Table (8) and Fig. (2):

Table (8): Comparison between calculated
Average/ All attributes Membership Degrees
D p-all attributes | p-CW [ p-MT [ p-FN p-Average
51 0.18 019 02 014 018
52 042 013 0.08 013 012
52 0.14 0143 017 013 014
54 01 0.08 0.08 013 01
55 011 0.08 0.09 014 01
56 015 0.13 011 014 0.15
57 012 013 011 0.13 012
58 0.1% 019 0.09 0.16 0.15
59 0.14 018 0.09 014 014
510 0143 0.08 047 014 042
511 011 0.08 0.03 014 01
512 013 0.08 0147 014 012
513 011 0.08 0.09 014 01
514 0.1% 013 0147 014 0.15
515 011 0.08 0.03 014 01
516 0.1% 019 0.08 014 014
517 0Ar7 0.13 02 018 017
518 018 0.18 02 018 018
513 0.18 018 02 0.18 015
520 0A7 0.16 02 014 017
0.25
—— -3l se®eepay
02 -
2
L
g 0.15
o] .
£ 01
b
0.05
0
0 5 10 15 20
Student
Fig. (2): Comparison between calculated

Average/ All attributes Membership Degrees.

Furthermore, we showcase the practical

utility of our

method by successfully
identifying Membership Degree within a
large dataset of academic grades contains
200 students as shown in Fig. (3).
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Fig. (3): Comparison between calculated
Average/ All attributes Membership Degrees for
large data set

CONCLUSION

This paper presents a novel SRS-based
method for validating element class
membership in information systems. Our
approach demonstrates remarkable efficacy
in both capturing attribute relationships and
calculating membership degrees, even when
compared to existing techniques. The
similarity between individual and aggregate
membership calculations adds robustness,
while the case study and large-scale student
performance evaluation highlight the
practical feasibility and effectiveness of our
method. This nuanced, context-aware
approach has the potential to empower
informed decision-making and performance
improvement across Vvarious information
systems, paving the way for future
applications with enhanced accuracy and
better-informed decisions. In our future
work, we will discuss the proposed methods
in other fields such as (Abd EI-Monsef et
al., 2014; Abd EI-Monsef et al., 2017; Al-
Shami et al., 2020; Lu et al., 2021).
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