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Double folding, The present work aims to use semi-microscopic and full
Paulo Sé&o microscopic methods to analyze experimental data for alpha elastically
potential, alpha scattered by ®’Li, °Be, and 'B in the energy range from 26 to 166 MeV.
elastically In the semi-microscopic method, the double folding Sdo Paulo Potential
scattered by (SPP) was used as a real part of the optical potential, while the Woods-
®7Li, °Be and Saxon form was used as an imaginary part. In the present calculations,
g the real part of the optical potential is derived by folding the nucleon-

nucleon (NN) interaction into the nuclear matter density distribution of
the projectile and target nuclei using the computer code SPOMC3. The
optical model parameters and the normalization factors have an
influence on the fitting of the experimental data. The volume integral of
the imaginary part of the optical potential and the cross-section were
found to be energy-dependent. In the full-microscopic method, the SPP

was used as both a real and an imaginary part.
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Introduction

The study of alpha particle
scattering on target nuclei like °Li, Li,
Be, and B using the double folding
model

represents a  sophisticated

approach to understanding nuclear
interactions at a microscopic level. The
double folding model, based on the
effective nuclear interaction potential,
offers a powerful tool for investigating
the elastic scattering of alpha particles
on various nuclei. This model considers
the nuclear densities of both the
projectile (alpha particle) and the target
nuclei, along with the effective nucleon-
nucleon interaction potential, to simulate
the scattering process accurately. The
folding model is one of the most widely
used methods for determining the
nucleus-nucleus interaction potential.
There are many previous researches
were studied alpha elastically scattered
on light nuclei (Qaim et al., 2016; Saad,
1995; Burtebaev et al., 2005; A. H.
Amer et al., 2016; Burtebayev et al.,
2020; Amar, 2022; Amer et al., 2021).
The elastic scattering of alpha particles
by light nuclei has been studied using a
double folding model that employs SPP
as the real part of the optical potential.
This model incorporates the concept of
Pauli nonlocality, which accounts for the
exchange of nucleons between the target

nuclei and the projectile alpha particles.

The choice of target nuclei, including °Li,
Li, °Be, and !B for alpha particle
scattering studies using the double
folding model is motivated by their
unique nuclear properties and relevance
in nuclear physics research. These nuclei
exhibit distinct characteristics that make
them ideal candidates for investigating
the elastic scattering of alpha particles
and extracting valuable information
about nuclear structure and nuclear
reaction mechanisms (Alvarez et al.,
2003; Chamon et al., 2002). This work
aims to investigate the differential cross-
sections of alpha elastically scattered by
light nuclei at low energies using semi-
microscopic  and  full-microscopic
models.

Theoretical Formalism

Sao Paulo potential (SPP)

SPP is a theoretical model used in
nuclear physics to describe heavy-ion
nuclear interaction. It has been
successful in explaining various aspects
of heavy-ion scattering, including elastic
and inelastic interactions. The model
was developed by a team of researchers
at the University of Sdo Paulo and has
been widely used in the field of nuclear
physics. The SPP is based on a double
which is a

folding  potential,

mathematical representation of the

interaction between two nuclei. This



potential is calculated by folding the
density distributions of the two nuclei
with the nucleon-nucleon interaction.
The model includes relativistic effects
and is capable of describing the energy
dependence of the optical potential,
which is essential for understanding
heavy-ion scattering. The SPP has been
applied to a wide range of heavy-ion
systems and has been shown to be
effective in describing the elastic and
inelastic scattering of various nuclei. It
has also been used to study nuclear
fusion and the properties of dense
matter. The model continues to be an
important tool in nuclear physics
research, particularly in the study of
heavy-ion interactions and nuclear
reactions (Chamon et al., 2002; Gémez
et al., 2011; Ibraheem, 2016; Amer et
al., 2021; Gasques et al., 2003;
Ibraheem et al., 2020; Chamon 2007).
The SPOMC3 code (Chamon, 2013)was
used to calculate the cross-section using
double folding. It is based on SPP as the
real part of the optical potential. The
model has been used to calculate the
total reaction cross-section (Chamon,
2007; Amer et al., 2021). In the semi-
microscopic SM method, SPP was used
as a real part of the optical potential
whereas the imaginary part (W) was

used Woods-Saxon form as:
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Vop == NHVSPP + iW (l)
In the full microscopic FM method, SPP
was taken as a real and imaginary part of

optical potential as:

Vop = (Ng + iN;)Vspp 2
Within  this  model, the nuclear
interaction is connected with the folding
potential  through the relationship
(Chamon, 2007):

Vspp(r,E) = Vp(r)e /<, 3

Where v is the local relative velocity
between the interacting nuclei and c is
the speed of light. The velocity
dependence results from the effects of
the Pauli non-locality, which comes
from nucleon exchange between the
alpha and the target. The relative

velocity is given by (Chamon, 2007):

v2(r,E) = ; [E — V(1) — Vspp(r, E)] (4)

The velocity v related with the kinetic

energy Ex is given by (Chamon et al.,

2002) ;

vA(r, B)/c? = S Ex(r) (5)

where [ represents the reduced mass of
the system. The SPP is obtained
numerically from solving Egs. (1) and
(2) by an iterative process. The folding
potential Vg(r) is calculated according to
the relationship (Alvarez et al., 2003) :



Vi@ = pp(rp) p:(rVy S(I? +7 -
| )d3r,d%r,.
(6)

Where V,= — 456 MeV.fim®, p, and p,

are the nuclear matter densities of the
projectile  and the target nuclei,
respectively. The densities of the targets
are expressed in the form of a two-
parameter Fermi (2pF) distribution as:

pol(C.M)
e RG(CATy (7)
a(C.M)

Where Rge = (1.76 Z1/3

p(r) =

—096) fm
and  Rgy = (131473 —084) fm
represent the radii of charge and matter
densities, respectively. a;=0.53 fm and
aw=0.56 fm represent the average
diffuseness values for the charge and
matter density distributions of the target
nuclei, respectively (Chamon, 2007).
The matter density distribution of *He is
taken in the form of the Gaussian shape
(Amer et al., 2020):

Po(T) = poexp (—BT?) (8)
With (p, = 0.4229fm3, p=0.7024) for
a particles.

Results and Discussions
Alpha elastically scattered by °Li

Optical parameters of protons, deuterons,

and alpha elastic scattering by °Li have
particular significance in astrophysical
studies. °Li is a weakly bound nucleus
and has two configurations, *He+>H and
2022). Thus, for
obtaining the information of the °Li

dta (Amar et al.,
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configuration, alpha is wused as a
projectile. In our study, we compared the
experimental data and the theoretical
Alpha elastically
scattered on °Li at the 29.4, 50.5, 59.0,
104.0, and 166.0MeV energies are
shown in Fig. (1).

predictions  for

The potential
parameters have been modified to
reproduce differential  cross-sections
which are listed in Table (1). In the
semi-microscopic model, the real part of
optical model was taken as a Sao Paulo
potential whereas the imaginary part was
taken as Woods Saxon. The present
analysis was performed using FRESCO
(Thompson, 2006) with the parameters
of the imaginary surface part. In the OM
calculations, the Coulomb radius r.=1.3
fm was taken. To obtain the best fit of
the calculations with the experimental
data, the normalization factor N, and the
imaginary surface potential parameters
(Ws and as) must be adjusted where rs=
1.292 fm was fixed. In the case of SM
calculations (red lines), the N, was in the
range of 0.9 - 1.1. The reaction cross-
section og has been calculated using
FRESCO. The volume integral of the
imaginary part, Jy, has been calculated
through the phenomenological equation

(Alietal., 2018):

=" lg w@rtdr=11

o
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Table (1): Double folding of alpha elastically scattered by °Li using fresco code

Semi-microscopic parameters
E(MeV) Ny | Ws(MeV) as(fm) Jw(MeV.fm?) 6(mb)
29.4 0.9 15.0 0.62 59.52257 788.95
50.5 1.1 16.0 0.55 57.66086 686.17
59.0 0.9 17.0 0.50 57.29398 601.22
104.0 0.9 10.0 0.90 58.61639 784.24
166.0 1.0 20.0 0.60 77.19235 569.84
Full microscopic parameters
E(MeV) Ngr N; 6(mb)
29.4 1.1 0.30 804.45
50.5 1.2 0.35 729.45
59.0 1.0 0.35 672.72
104.0 0.9 0.50 611.60
166.0 0.8 0.50 518.04

Alpha elastically scattered by Li
The study of the ‘Li nucleus is of

particular interest because it is an isotope
of °Li and contains clusters that can be
classified as 2H+’He or t+'He
(Shrivastava et al., 2013; Beck et al.,
1981; Amar et al., 2021). The analysis
of alpha elastically scattered by "Li has
been done at energies (26.0, 29.4, 50.5,
and 65.0 MeV) as shown in Fig. (2). The
angular distributions were analyzed
using microscopic and semi-microscopic
models. The imaginary potential
parameters are listed in Table (2) where
rs =1.34 fm (Perey et al., 1976) is fixed.
The double-folded potential is calculated
using the normalization factor, and the

result is compared to experimental data

until the calculated potential and the
experimental data match as much as
possible, the normalization factor's value
is changed iteratively. The calculated
cross-section o, decreased with the
energy increase also the behavior of the
volume integral J,, depending on energy
increases up to 10-20 MeV per nucleon.
The second fitting represented the full
microscopic (FM) potential, with the
and Ngr
presented in Table (2). It was observed

that the FM analysis is better than the

normalization factors N;

semi-microscopic analysis, especially at
higher energies where the maximum
value of Ng was obtained at E4 =65.0
MeV.
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Fig. (1): Alpha elastically scattered by °Li at 29.4 MeV(Matsuki, 1968), 50.5 MeV/(Bragin et
al., 1986), 59.0 MeV(Foroughi, et al., 1979), 104.0 MeV (Hauser et al., 1969), and 166.0
MeV(Bachelier et al., 1972) where the squares represent the experimental data, solid lines
represent semi-microscopic model and dash-dot lines represent full microscopic model
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Table (2): Double folding of alpha elastically scattered by ’Li using fresco code

Semi-microscopic parameters
E(MeV) N, W,(MeV) as(fm) Ju(MeV.fm®) 6.(mb)
26.0 1.2 8.0 0.8 39.53313 935.10
29.4 1.1 7.0 0.9 39.09497 986.26
50.5 1.0 17.0 0.5 58.91707 670.65
65.0 1.2 13.0 0.75 60.42851 848.03
Full microscopic parameters
E(MeV) Ngr N; c.(mb)
26.0 1.1 0.2 789.25
29.4 1.2 0.4 829.86
50.5 1.2 0.4 734.18
65.0 1.2 0.5 718.10

Alpha elastically scattered by °Be
The comparison between the

experimental data and the theoretical
predictions for “He elastically scattered
on °Be at energies (40.0, 45.0, 48.0, 50.0,
63.0, 65.0 and 90.0 MeV) are shown in
Fig. (3) based on the
parameters, which are listed in Table (3)
where r,=1.306 fm. To obtain a fit of the

potential

calculations with the experimental data,
the N, and the
parameters must be adjusted. These

imaginary potential

parameters were changed freely until the
best fit was obtained. The N, factor was
in the range of 0.9 - 1.2. At 45.0 MeV,
the calculated reaction cross-section
gives its maximum value while the J
gives its minimum value. In the full
microscopic method, the parameters N;
and Ngare varied freely until they obtain
the best fit, as presented in Table (3). It
should be noted that the FM analysis is
satisfactory, especially at higher energies,

as shown in Fig. (3).

Alpha elastically scattered by *'B

The angular distributions for “He
elastically scattered on B at energies
(29.0, 40.0, 48.7, 50.5, 54.1 and 65.0
MeV) is shown in Fig. (4). The potential
depth of the surface imaginary part,
diffuseness, and normalization factor
(Ws, as and N;) were varied freely until
we had the best agreement between the
theoretical calculations and experimental
data, where ry =1.34 fm was fixed, as
presented in Table (4). Good analysis
was obtained at alpha elastically
scattered on B in two models. The
calculated reaction cross-section
decreased with energy increased. It was
observed that the FM analysis is better
than the semi-microscopic analysis,
especially at higher energies. The
imaginary part of the FM model depends
on nucleon-nucleon interaction through a

folded model.
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Fig. (2): Alpha elastically scattered by "Li 26.0 MeV (Bingham et al., 1971), 29.4 MeV(Matsuki,
1968) ,50.5 MeV/(Burtebaev et al., 1996) and 65.0 MeV (Hamada et al., 1994) where the squares
represent the experimental data, solid lines represent semi-microscopic model and dash - dot lines
represent full microscopic model

Table (3): Double folding of alpha elastically scattered by °Be using fresco code

Semi-microscopic parameters
E(MeV) | Nr W; (MeV) as (fm) Jw (MeV.fm°) 6, (mb)
40.0 1.2 15.0 0.7 57.91358 944.88
45.0 1.2 10.0 0.6 34.5546 1011.57
48.0 1.0 16.0 0.6 55.28737 807.89
50.0 0.9 16.0 0.58 54.1097 772.24
63.0 0.9 16.0 0.58 54.1097 740.11
65.0 0.9 18.0 0.56 59.59346 733.57
90.0 1.1 19.0 0.7 73.3572 867.98
Full microscopic parameters
E(MeV) Ng Ni or(mb)
40.0 0.9 0.3 770.78
45.0 0.9 0.3 750.45
48.0 1.1 0.3 768.34
50.0 11 0.35 778.26
63.0 1.1 0.45 767.77
65.0 0.9 0.5 776.67
90.0 11 0.35 662.24
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Table (4): Double folding of alpha elastically scattered on *'B using fresco code

Semi-microscopic parameters
E(MeV) N, W(MeV) | a(fm) | J,(MeV.fm°) c.(mb)
29.0 1.1 12.0 0.7 46.6979 1002.16
40.0 1.1 14.0 0.5 45.07363 808.82
48.7 1.2 17.0 0.5 54.73226 812.98
50.5 1.2 17.0 0.5 54.73226 807.47
54.1 1.2 17.0 0.5 54.73226 796.91
65.0 0.9 13.0 0.6 45.85777 792,51

Full microscopic parameters
E(MeV) Ng N; 6.(mb)
29.0 1.1 0.4 925.50
40.0 1.2 0.25 857.33
48.7 1.1 0.3 823.05
50.5 1.1 0.3 816.42
54.1 1.1 0.3 803.39
65.0 1.2 0.3 811.06

It also considers the relative speed
between levels and the speed of light to
overcome the Pauli effect through SPP.
This potential gave good results at alpha
around 50 MeV,
approximately with all nuclei. At higher

particle energies

energy, the fitting is good for forward
angles only. The relations between Jy, o,
N,, W; and as for the a+®’Li, a+°Be, and
a+"B systems and alpha energy, are

shown in Fig. (5). The behavior of the

volume integral J,, depending on energy
increases up to 10-20 MeV/ nucleon as
(5).

normalization factors from the SPP

shown in Fig. The extracted
potential are almost equal to unity. The
cross-section decreases with increasing

energy.
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Fig. (4): Alpha elastically scattered by B 29.0 MeV(Burtebayev et al. 2018), 40.0
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Fig. (5): The behavior of the optical potential parameters Jw(a). o, (), N (c), Ws (d) and as (e),

for a+°'Li, o +°Be and a +''B systems
Conclusions

The double folding model was used

to analyze the considered data semi-

microscopically and full-microscopically.

The Woods-Saxon form was used for the
imaginary part of the SM model. All
systems under examination have
extracted normalization factors from the
SPP potential that are almost equal to
unity, indicating that the SPP potential
might  reasonably  reproduce the
experimental data. The Normalization
factor exhibited an energy-dependent
behavior for the systems. The semi-
microscopic analysis is still valid to

reproduce the differential cross-section

The Full
microscopic analysis could reproduce

at the forward angles.
the differential cross-section at forward

and intermediate angles, where the
analysis of the back-ward angles (6 >
120") needs the transfer mechanisms.
The Full microscopic analysis in our
study is considered a good choice for
studying nuclear reactions because we
took into consideration the density
distribution for both the incident and
target nuclei and the local relative
velocity between interactive nuclei in

both the real and imaginary parts.
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