DJS Vol. 48(1)(2024) pp. 186-206 ISSN: 1012-5965

ence

Delta Journal of Science
Available online at i

e —

16 https://djs.journals.ekb.eg/ S T

/"%

¥
20Y
0
9

g
o
s O
s
B

¢

g

STRERTIREL

Research Atrticle MATHEMATICS

Design of backpropagation learning algorithm for MHD mixed convective
Prandtl nanofluid flow with activation energy

Eman Fayz A. Alshehery*!, Eman Salem Alaidarous®, Rania. A. Alharbey*, Muhammad Asif
Zahoor Raja’

'Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
*Future Technology Research Center, National Yunlin University of Science and Technology, Douliou,
Yunlin 64002, Taiwan

*Corresponding author: Eman Fayz A. Alshehery Email: eabdulrahmanalshehery@stu.kau.edu.sa

Received: 8/3/2024 Accepted: 23 /3/2024
KEY WORDS ABSTRACT
Activation The use of artificial intelligence techniques for solving challenges
Energy, has grown in popularity recently in a range of areas. Additionally,
nanofluid is interesting for a variety of applications, especially in
Prandtl cooling and heat transfer systems, since it is used to improve the thermal
Nanofluid, features of fluid. In the present study, a design of a backpropagation
Artificial Neural learning algorithm is provided to analyze the flow properties in a
Network magnetohydrodynamic mixed convective flow of Prandtl nanofluid
’ (MHD-MCPNFF) with gyrotactic microorganisms over a stretchable
Lobatto I1IA, surface affected by the activation energy. An ordinary differential
Levenberg equations ODEs system is obtained from a partial differential equations
Marquard, PDEs system of the original mathematical formulation by using suitable
MHD transformations. Applying the Lobatto I11A technique to solve ODEs for

various scenarios by changing the values of Prandtl fluid parameter (o),
magnetic parameter (M), Brownian motion (Nb), thermophoresis (Nt),
activation energy (E), chemical reaction rate (c), and Peclet number (Pe)
to find a set of data for the MHD-MCPNFF model. Using these
solutions through nftool in MATLAB for designing the Levenberg—
Marquardt backpropagation learning algorithm (LMBLA). The
effectiveness and accuracy of the designed LMBLA are verified through
the mean squared error (MSE), error histograms, and regression
illustration plots. The flow velocity has the opposite behavior for
growing values for Prandtl fluid and magnetic parameters. For rising
values of Brownian motion and thermophoresis parameters, the fluid
temperature increases. The increasing values of the activation energy
parameter imply the increasing concentration of nanoparticles
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Introduction
A fluid that includes nanoparticles, or

particles smaller than a nanometer, is
referred to as a nanofluid. Nanofluid is
created by a small number of nanoparticles
as metals or oxides pendant in traditional
fluids such as water and oil. Nanofluids
have superior thermal features useful in a
wide range of heat transfer applications,
such as coolants in many types of heat
transfer devices, including radiators and
electronic cooling systems. Actually, Choi
and Eastmen (1995) presented the first
study to wuse the term "nanofluid".
Recently, many studies have investigated
nanofluid mechanics. Al-Yaari et al.,
(2023) developed a model to evaluate the
influence of nanofluid thermophysical
properties in a heterogeneous porous
media to enhance oil recovery. The impact
of nanofluid type, nanoparticle
concentration, and nanofluid depths on
solar still performance was investigated by
(Modi et al.,, 2023) using up-to-date
literature. By evaluating the viscosity and
thermal conductivity of magnet nanofluids
(Selim et al., 2023) examined the effects

of an external magnetic field on nanofluids.

Hafeez et al., (2023) researched the impact
of Cu-Al203
rheological,

nanoparticles on the
dynamic  viscosity, and
thermal conductivity of kerosene oil-based

hybrid nanofluids .

The exploration of the dynamics of
fluids that conduct electricity is known as
magnetohydrodynamics (MHD). It derives
from magneto, which means magnetic
field, and hydro, which means water, and
also dynamics, which means movement.
MHD is used widely in industry and
engineering but is largely employed in
nanotechnology. In recent decades, many
researchers studied the features of MHD.
In the presence of an angled magnetization
and viscous dissipation, (Galal et al.,
2024) explored the transfer rate of heat
and mass for three-dimensional MHD
nanofluid flow with thermal radiation and
chemical reaction across the dual
stretchable surface. Based on the MHD
non-Newtonian (Maxwell) nanofluid flow
with anArrhenius activation energy,
(Ahmed et al., 2024) investigated both
linear and nonlinear radiation patterns.
Mahmood et al., (2023) studied the effects
of mass suction and heat
production/abstraction on MHD stagnation
point flow in a nonlinearly
shrinking/stretching sheet of a water-based
tri-hybrid nanofluid. In the presence of
internal heat generation and a sink, (Reddy
et al., 2023) evaluated the effects of the
MHD heat

incompressible viscous fluid over a

transfer features of an
constantly stretching horizontal cylinder

submerged in a porous medium.
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A theoretical structure called the Prandtl
fluid model is employed to explain the
dynamics of fluids with certain properties,
especially those that have poor thermal
conductivity and high viscosity. It takes
the name of the German researcher and
engineer Ludwig Prandtl who made
important advances in fluid mechanics.
Many engineering issues have been
addressed using it, such as the
investigation of heat transport close to
solid surfaces and the aerodynamics of
airfoils. In the flow of MHD Prandtl fluid
along an unsteady stretched surface (Asad
2023)
production using Soret and Dufour impact.
The  Prandtl-Eyring
researched by (Shah et al., 2023) with base

fluid motor oil passing across a heated

and Riaz, assessed  entropy

nanofluid  was

stretching surface with the generation of
entropy.

The rate of chemical changes can vary
depending on several factors, such as
activation energy and it can be used to
understand the entire process and the
reaction mechanism. In 1889, the scientist
Arrhenius first put up the concept
"activation energy”. As the name implies,
it is the least amount of energy desired to
initiate a chemical process or mimic a
reaction. Very few investigations have
been conducted on the chemical process
and activation energy. Bio-convected
unstable Williamson fluid flow at a heated

stretching surface in a porous medium was

Alshehery et al., (2024)

studied numerically by (Jabeen et al.,
2024). The research also examined the
presence of specific viscous dissipation
and activation energy. Wagas et al., (2023)
investigated numerically the micropolar
nanofluid flow over a three-dimensional
rotating surface, including activation
energy and heat source/sink influences
throughout the rotating surface. Jawad et
al., (2023) addressed the convective
Darcy-Forchheimer flow of the Maxwell
nanofluid via a porous stretched sheet and
the effects of activation energy and mass
transfer. Yasir et al. (2023) observed the
impact of activation energy on the micro-
rotation characteristics of magnetized
micropolar fluid flow at the stagnation
point region on a porous shrinking surface
harboring gyrotactic microorganisms .

The artificial neural network (ANN) is a
normal statistical method for analyzing the
correlations between variables. An ANN is
designed of continuous layers of different
nodes that analyze input and provide
outputs depending on activation functions
that have been predetermined. One
popular supervised learning technique for
artificial neural network training is
backpropagation. In 1974, Paul Werbos
invented the backpropagation technique.
Backpropagation uses the gradient descent
technique, which minimizes network error.
Generally,  backpropagation  learning
algorithms are used for this such as the

Levenberg—Marquardt  backpropagation



learning algorithm LMBLA which is
designed and used in this paper. Using
Levenberg-Marquardt  backpropagation
neural networks, (Asghar et al., 2024)
presented the numerical solutions to
singular functional delay differential
equations of third, fourth, and fifth orders,
which occur in quantum calculus models.
Goud et al., (2023) investigated the non-
Fourier unsteady heat transference of a
trapezoidal porous fin by using the
Levenberg-Marquardt  technique of
backpropagation artificial neural network
to study the thermal variations in the fin.
(2022) used the

stochastic

Mukdasai et al.,
effectiveness  of numerical
supervised neural networks to show
numerical simulations of the novel
fractional order Leptospirosis model.

To the authors’ best knowledge, all
previously published studies are limited to
using the traditional numerical treatments
to solve stiff nonlinear equations systems
for flow models of nanofluidic problems.
Consequently, this study lists the primary
contributions to designing a
backpropagation learning algorithm based
on the Levenberg-Marquardt
backpropagation
LMBLA through the nftool package in

MATLAB and it uses to find the

learning  algorithm

numerical solution for a
magnetohydrodynamic mixed convective
flow of Prandtl (MHD-

MCPNFF) with gyrotactic

nanofluid
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microorganisms over a stretchable surface
affected by the activation energy. Also,
current study used the numerical and
graphical statistical data to verify the
success and precision of this new
algorithm to use it for predicting problem
solutions in various fields. Furthermore,
this study provided numerical solutions of
the MHD-MCPNFF model by LMBLA
are used to examine the variants of flow
dynamics such as flow velocity, fluid
temperature, nanoparticle concentration,
and microorganisms motile density by
changing values of specific physical
parameters.

Nomenclature:

MHD Magnetohydrodynamics

ANN Artificial neural network

LMBLA Levenberg Marquardt
backpropagation learning algorithm

ODE Ordinary differential equations

Tw Fixed temperature

Cw Fixed concentration

0, Fixed motile density

v kinematic viscosity

Gr Grashof number

g Gravitational acceleration

W, Local Weissenberg number

MCPNFF | Mixed convective flow of
Prandtl nanofluid

(x,v) Cartesian coordinates

PDE Partial differential equations

MSE Mean squared error

0. Free motile density

T, Free flow temperature

C.. Free flow concentration

at Thermal diffusivity

K, Chemical reaction constant

m Fitted rate constant

S1 Scenario 1,..., etc

C1 Case 1,..., etc
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Model of the problem

The model of the problem can be seen in
Fig. (2).
incompressible MHD mixed convective flow
of Prandtl

microorganisms with the impact of activation

Here, let us suppose an

nanofluid in the presence of
energy across a stretchable surface. Consider
in this problem the following

e The velocity components are ¥ and ¥ in

the x-direction and y-direction,

respectively along the stretching surface.

. T,C, and 1 represent the fluid temperature,

nanoparticle concentration, and
microorganism density close to the surface,
respectively.

o For the present model flow, the additional
stress tensor was defined as (Kumar et al.,

2017).

e (1[G G T)..
[(3—,,“) +(a—,,)] >

Where (€1:¢2) represent the material variable
of the Prandtl fluid model.

Fig. (1): The problem geometry

The governing PDEs for the suggested flow
model are (Zafar et al., 2023).

Alshehery et al., (2024)

du dv_ .
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The boundary conditions are
ﬂ:uw:ﬂx,ﬂZl},T T ﬂ ﬂwat ©)
y=0,
u=20,T->T,C->C,0->0_ a5z ow. @)
where p is the fluid electrical conductivity,
a® is the fluid thermal diffusivity, v is the

fluid kinematic viscosity, E_ is the
activation energy, t*is the particle heat
capacity to the fluid heat capacity, D, Dz,
and D, are the thermophoretic, Brownian
motion, and microorganism diffusion
parameters, respectively.

Using the dimensionless variables

fa T-T, c-C, a-0,
—y‘E.ﬂ(n) ToT ~,0(n) = “Tc .x(n)—ﬂ' | ®
u = axf'(n),v = Jav[f @)L ¢ = Vav[xf(n)].
This gives the following ODEs
of ~(FF+if +af(f V'f -Mf +A@-No-R)=0, | )
a'+Pr(fa'+ NbB'p'+ N9} =0, (10)
o"+5cfo'+ bﬂ" Sww(l-l-ﬁﬂ)"‘exp( 1-I-59) 0, | (11)
1"+ Lb(fy)— Pe[e"(x+ 1) + x'¢'] =0. (12)
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where & =2 is the Prandtl fluid

Co Cf _ Tw Nu. — Iqw
= x N T e oy
parameter, B = % is the elastic p";i' H;(wa To) | (15)
sh: — ¢J‘Nﬂr — L_
parameter, M = % is the magnetic Dy(C, —Ca) (8~ 0,)

er where Cf, is the skin friction coefficient,

parameter, A= = is the mixed
: ] T, IS shear stress, Nu_, is the local Nusselt
; _ FPc(GyCx)
convective parameter, N' = aBr (T, —T,) 1S number, g, is the surface heat flux, sk, is
the buoyancy ratio  parameter, the local Sherwood number, g, is the
_ xlem—ep )0y —0) is the surface mass flux, Nn_ is the local density

B pr B ) (Ty—Ty)
of microorganism, and g,, is the motile

bioconvection Rayleigh number, Pr = g . .
« microorganism flux. Therefore

AL

is the Prandtl number, Nb = % is q0u+c1 &u)’ Km. Dac D N »
L e it Pyl L M Pl Ml Pl M

Brownian motion parameter, Nt=% U ol Y

® With these quantities, and the provided
is thermophoresis parameter, S¢ = — is o .

Dg similarity transformation,
Schmidt number, o= K js chemical - n, B -
7= uCf.(Re,)* = af +?(f"')3,ﬂu,(Re,) Vi=_g0), 17
. — T\\I'_Tm - -1/ _ -1/2 _

reaction  parameter & o is Sh_(Re ) /2 = —¢'(0),Nn_(Re,) /% = —¢'(0).

— Ty
temperature ratio, m is fitted rate Here, (Re.) === represents the local

parameter which it lies in the range —1 < Reynolds number.
Methodology explanation

m < 1, E=—2_ s activation energy
150D

The backpropagation learning of

constant, Lb = _— is the bioconvection ANN is regarded as a function

Lewis number, Pe =2% is the Peclet optimization problem, in which the aim is
to find the ideal network parameters

number, and A=ﬁ 's the motile (weights and biases) to minimize neural
microbes parameter. network error. The Levenberg-Marquardt
Boundary conditions as backpropagation  learning  algorithm
0)=1,1(0) =0,p(0) = 6(0) = x(m) =1, LMBLA is one of several functional
af” =0 () optimization techniques that can be
:; (i};[],ﬂ(m}=[]=qp(m),;{(m]=[]. s directly used in network learning. To

design this algorithm, there are two steps:
Additionally, the physical quantities are the first step is to find the numerical

(Bafakech et al., 2022) solutions used to create a dataset for
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LMBLA and the other step is the process
of applying this algorithm and verifying its
accuracy and effectiveness.
The LMBLA data set is the numerical
solutions of the dimensionless flow model
MHD-MCPNFF represented by ODESs in
Egs. (8)-(12) with Egs. (13)-(14). Using
the Lobatto I11A approach to find these
solutions with the help of MATLAB
software. The numerical solutions are
determined by input values between 0 and
6, with a 0.001 step size for several
scenarios S1-S7 by the changes of
physical parameters a, M, Nb, Nt, E, ¢, and
Pe, each with four cases C1-C4 of MHD-
MCPNFF, as explained in Table (1).
The recommended LMBLA methodology
is designed to find the numerical
treatments of the MHD-MCPNFF model
for various scenarios using the command
"nftool"” through the MATLAB program in
the neural network toolbox. For 6001
input points, the data set can be divided as
follows:
¢ 75% of the data set is employed for the
training process.
¢ 15% of the data set is used in the testing
process.
¢ 15% of the data set is utilized for the
validation process.
Additionally, the number of neurons is
changed to 20 under the required level of
accuracy for computing results.
Figure 2 indicates the architecture of the

recommended network.

Table (1): Details of scenarios and cases for

Alshehery et al., (2024)

MHD-MCPNFF
Physical Quantities
Scenarios | Cases

e | M |Nb|Nt| E | o | Pe

1 1 01/01(01|01]|01]|01]10
2 02(01(01(|01]01]|01]10

3 03(01(01|01]01]|01]10

4 04/01(01|01]|01]|01]10

2 1 01/01(01|01]01]|]05]10
2 0102|101 (|01(01]05]|10

3 01/03(01|01]01]05]10

4 01/04(01|01]|01]|]05]|10

3 1 01/01(01|01]01]|01]10
2 01/01({03|01]01]|01]10

3 01/01]05|01|01(01]10

4 01(01(07|01]01]|01]10

4 1 01/01]10|01|01(01]10
2 01(01(10|03]01]|01]10

3 01/01]10|05|01(01]10

4 01/01|10|07]01(01]10

5 1 01(01(01|01]01]|01]10
2 01/01]01|01|05(01]10

3 01/01(01|01]10]|01]10

4 01/01({01|01]15|01]10

6 1 01(01(01|01]01]01]10
2 01/01(01|01]01]|02]10

3 01/01({01|01]01]|03]|10

4 01/01(01|01]01]|04]10

7 1 01/01({01|01]01]|01]10
2 01/01(01|01|01|01]|12

3 01/01({01|01]|01]|01]|14

4 01/01(01|01|01|01]|16

Fig. (2): The architecture of the recommended

network
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Results and discussion
The

evaluation of LMBLA processes for seven

effectiveness and accuracy
scenarios with varying cases in MHD-
MCPNFF the

between target data (solutions by Lobatto

through comparison
IIIA) and output data (solutions by
LMBLA),
Figs. 3,4,5,6,and 7.

As shown in Table (2), the analysis of all
MSE

is illustrated graphically in

numerical data  including for
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training, testing and validation,
performance, gradient, mu, epochs, and
time for each of the four cases of the seven
scenarios. Table (2) indicates that the

the LMBLA
11).

MSE performance of
processes is in the range (10° to 10°
These numerical results demonstrate the
best performance of LMBLA in the MHD-
MCPNFF solution.

Table (2): Total numerical analysis of LMBLA for MHD-MCPNFF

MSE Performance Mu Gradient | Epochs | Time

Scenario | Case | Training | Validation | Testing (S)
Cl | 4.36E-10 | 4.23E-10 | 4.15E-10 4.36E-10 | 1.00E-10 | 9.98E-08 | 123 22

S1 C2 | 9.33E-10 | 1.00E-09 | 9.14E-10 9.33E-10 | 1.00E-09 | 9.98E-08 | 431 36
C3 | 1.79E-10 | 1.74E-10 | 1.87E-10 1.79E-10 | 1.00E-10 | 9.89E-08 | 135 11

C4 | 1.87E-10 | 1.90E-10 | 1.85E-10 1.87E-10 | 1.00E-10 | 9.93E-08 | 132 11

Cl | 7.47E-11 | 6.73E-11 | 7.92E-11 7.47E-11 | 1.00E-09 | 1.68E-08 | 573 50

S2 C2 | 852E-11 | 855E-11 | 8.35E-11 8.52E-11 | 1.00E-10 | 9.99E-08 | 290 23
C3 | 1.56E-10 | 1.61E-10 | 1.61E-10 1.56E-10 | 1.00E-09 | 4.26E-08 | 141 11

C4 | 5.35E-10 | 4.98E-10 | 5.49E-10 5.35E-10 | 1.00E-10 | 9.85E-08 | 116 9

Cl | 3.49E-10 | 3.26E-10 | 3.54E-10 3.49E-10 | 1.00E-10 | 9.91E-08 | 131 10

S3 C2 | 4.28E-10 | 4.47E-10 | 4.43E-10 4.28E-10 | 1.00E-10 | 9.79E-08 | 139 11
C3 | 1.91E-11 | 1.94E-11 | 1.83E-11 1.91E-11 | 1.00E-10 | 9.91E-08 | 497 43

C4 | 3.40E-11 | 3.44E-11 | 3.35E-11 3.40E-11 | 1.00E-10 | 9.95E-08 | 540 45

Cl | 4.45E-10 | 4.95E-10 | 4.44E-10 4.45E-10 | 1.00E-10 | 9.99E-08 | 126 10

S4 C2 | 1.56E-10 | 1.59E-10 | 1.57E-10 1.56E-10 | 1.00E-09 | 9.97E-08 | 664 57
C3 | 1.87E-10 | 1.91E-10 | 1.97E-10 1.87E-10 | 1.00E-10 | 9.85E-08 | 210 17

C4 | 496E-11 | 5.16E-11 | 4.91E-11 4.96E-11 | 1.00E-10 | 9.94E-08 | 371 31

Cl | 1.23E-11 | 1.26E-11 | 1.28E-11 1.23E-11 | 1.00E-10 | 9.93E-08 | 569 50

S5 C2 | 407E-11 | 4.08E-11 | 4.15E-11 4.07E-11 | 1.00E-10 | 9.99E-08 | 401 32
C3 | 6.50E-11 | 6.54E-11 | 6.68E-11 6.50E-11 | 1.00E-10 | 1.00E-07 | 271 22

C4 | 5.25E-11 | 5.82E-11 | 5.36E-11 5.25E-11 | 1.00E-10 | 9.96E-08 | 347 28

Cl | 4.36E-10 | 4.23E-10 | 4.15E-10 4.36E-10 | 1.00E-10 | 9.98E-08 | 123 9

S6 C2 | 4.78E-10 | 4.42E-10 | 4.61E-10 4.78E-10 | 1.00E-10 | 9.94E-08 | 123 10
C3 | 2.49E-10 | 2.61E-10 | 2.61E-10 2.49E-10 | 1.00E-09 | 9.99E-08 | 482 41

C4 | 4.47E-10 | 4.10E-10 | 4.66E-10 4.47E-10 | 1.00E-09 | 9.99E-08 | 501 44

Cl | 4.46E-10 | 4.64E-10 | 4.48E-10 4.46E-10 | 1.00E-10 | 9.72E-08 | 125 13

S7 C2 | 1.76E-10 | 1.79E-10 | 2.02E-10 1.76E-10 | 1.00E-09 | 4.29E-08 | 159 17
C3 | 1.82E-11 | 1.82E-11 | 1.74E-11 1.82E-11 | 1.00E-10 | 9.96E-08 | 456 53

C4 | 5.82E-11 | 6.00E-11 | 5.85E-11 5.82E-11 | 1.00E-10 | 9.99E-08 | 426 51
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In all seven scenarios with different cases
of MHD-MCPNFF, the mean square error
(MSE) between target data and output data
for training, testing and validation
processes is displayed in subfigures 3a-3g.
The optimal precision and performance
are approximately (107° to 107 at 123,
290, 540, 371, 401, 123, and 456 epochs,
respectively.  Furthermore, the specific
values of gradient and Mu appear to
correspond to the step size of the back
propagation of different cases for seven
scenarios in MHD-MCPNFF, which are
approximately ~ (9.98x10®,  9.99x10°®,
9.95x10°°,  9.99x10°%  9.99x10°°,
9.98x10°® and 9.99x10°®) and (10, as
4a-

4g. These plots demonstrate the convergen

shown in subfigures
ce of LMBLA for every scenario in MHD-
MCPNFF. The results of error histograms,
which further investigate the patterns of
error for each output and target data, are
displayed in subfigures 5a-5g for MHD-
MCPNFF. For each of the seven scenarios

Best Valldation Performance Is 4,22840-10 at opoch 123

nn
Valdaton
Test
Pt

a0 [ 4 50
123 Epochs

Fig. (3a): S1-C1: MSE outcomes

Alshehery et al., (2024)

ina variety of cases, the zero axes and
error box are approximately (—5.8x107°,
—6.4x1077, —3.4x107, —2.2x107°, 2x1077,
—4.8x10°° 4.68x10°%.  The
effectiveness of LMBLA for MHD-
MCPNFF is illustrated in Figure 6 by the
and

and

regression  study correlation
analysis of the errors between the target
and output data, which is proven by a
correlation value R = 1 in the testing,
validation, and training processes. Figure
(7) depicts the accuracy of the LMBLA-
based outputs generated, which are further
validated by error graphs and target results
obtained from the Lobatto I11A numerical
of MHD-
MCPNFF. For various cases of the MHD-
MCPNFF system, the largest errors for
data of
the LMBLA are around 5x10°, 2x107

5x10°, 2x10°, 1x10° 5x10™ and 2x10°°.

solver for all scenarios

training, testing, and validation

Best Validation Performance is 8.55¢-11 at epoch 290

Tran
! Wainton

Bast

Mean Squared Error (mse)

100 150
290 Epochs

Fig. (3b): S2-C2: MSE outcomes
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Fig. (3): LMBLA performance outcomes for various cases of MHD-MCPNFF
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Figures 8-11 display the numerical

solutions of the MHD-MCPNFF model by
LMBLA which represent the effects of the
different values of physical parameters
such as the Prandtl fluid (a), magnetic
parameter (M), Brownian motion (Nbk),
thermophoresis (Nt), activation energy (E),
the reaction rate (=), and Peclet number
(Pe) on the behavior changes of the flow
velocity f', temperature distribution &,
nanoparticle  concentration ¢ , and
microorganisms motile density y . Sub-
figures 8a-8b are illustrations of the effects
of the Prandtl fluid

parameters on the flow velocity, which is

and magnetic

the increasing value of the Prandtl fluid
parameter causes the rising of the flow
velocity while the flow velocity is
decreased for the growing rates of magnetic
parameter. Physically, the increase in
Prandtl fluid parameter values implies
reduced fluid viscosity and that leads to the
flow velocity being raised. Also, the rising
of a magnetic parameter generates resistive
force and this causes the decreasing flow
velocity. As shown in Figure 9, the fluid
temperature rises with larger quantities
of thermophoresis and Brownian motion.
The physical meaning of that is

the enhanced Brownian motion  and
thermophoresis characteristics cause the
increasing internal motion energy of the

nanoparticles and this implies increasing
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heat  transmission and  temperature
distribution. Figure 10 demonstrates that
the nanoparticle concentration has the
opposite behavior for growing values of
activation energy parameter and chemical
reaction rate. In physics, higher values of
chemical reaction rate are associated with
more destructive chemical reactions that
fluid

increased

effectively  eliminate species.

Furthermore, the activation
energy parameter deprecates the modified
Arrhenius  function that supports the
generated chemical process. The growth of
the Peclet number reasons the enhanced
diffusivity for microorganisms and this
implies that the motile density is decreasing,

as plotted in Fig. (11).
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Conclusion and Recommendations

In this work, the designed Levenberg-
Marquardt  backpropagation  learning
algorithm LMBLA was used for studying
the flow features of the
magnetohydrodynamic mixed convective
flow of Prandtl nanofluid MHD-MCPNFF
with gyrotactic microorganisms influenced
by activation energy across a stretchable
surface. The non-linear partial differential
equations PDEs system that represents the
MHD-MCPNFF was transmuted into a
dimensionless non-linear ordinary
differential equations ODEs system. The
Lobato I11A approach was employed to
construct the data set for designing
LMBLA by solving ODEs for different
physical
LMBLA with 20 hidden neurons is created
using 75%, 15%, and 15% of the data set

chosen for training, testing, and validation

parameters. The suggested

steps.

The basic outcomes of this study are

e The convergence of the designed
LMBLA for MHD-MCPNFF is shown
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through the gradient outcomes and Mu
variable values of 10°® to 10™%°,

e The accuracy of the proposed LMBLA
for MHD-MCPNFF is

through error analysis plots such as

represented

MSE, error histograms, and fitting
illustrations, which the errors between
10°to 10,

e The flow velocity is rising for large
values of the Prandtl fluid parameter
while it decreases with the increasing
magnetic parameter rate.

e For growing values of Brownian
motion and thermophoresis, the fluid
temperature is rising.

« The nanoparticle concentration has
opposite behavior for high rates of
activation energy and chemical reaction
rate.

« The rising value for the Peclet number
leads to a decrease in the motile
density.

Since the designed LMBLA

proved effective and accurate in this study,

Finally,

It can be used for many problems of the
nanofluid influenced by the activation
energy (Jawad et, 2023; Taj and
Salahuddin, 2023) in future work.
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