
DJS Vol. 48(1)(2024) – pp. 47-59   ISSN: 1012-5965 

   

 

Delta Journal of Science 
 

Available online at  

https://djs.journals.ekb.eg/ 

 
   

Research Article                                                                                                       MATHEMATICS 

Numerical and Qualitative Study of SICQR Epidemic Model 

Hoda A. Kamel, Hoda F. Ahmed, Rasha M. Farghly and Hala E. Abd El-Salam* 

Mathematics Department, Faculty of Science, Minia University, Egypt 

*Corresponding author: Hala E. Abd El-Salam                         Email: hala.emad@mu.edu.eg 

Received: 12/10/2023                                                                            Accepted: 28/1/2024 

 

KEY WORDS 
 

ABSTRACT 

Epidemiologica

l model, Basic 

reproductive 

number, 

Stability 

analysis,  

SICQR model, 

SCSC method 

 

 

In this article, the nonlinear SICQR model explains the 

dynamics of transmission of infectious diseases in a community. 

This model has five epidemiological compartments: susceptible S, 

infective I, individuals with strong immunity C, quarantined Q 

and recovered R. The desired model owns different equilibrium 

cases as an endemic equilibrium and a disease free equilibrium. 

This model describes the importance of strong immunity for 

community members to control the spread of COVID-19. The 

shifted Chebyshev spectral collocation (SCSC) technique is 

utilized to find the numerical solutions the desired model. The 

obtained results clarify the influence of strengthening the 

immunity of community members on controlling the spread of the 

disease. 
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Introduction  

  Infectious diseases are transmitted 

from person to person, insects, animals, 

food, and water spread a few. These 

include influenza, COVID-19, Hepatitis, 

and measles (Anderson and May, 1979; 

HethCote, 2000; Tyrrell and Bynoe, 

1966). The most common infectious 

disease in this period is COVID-19. The 

coronavirus that affects the respiratory 

system is a lung infection (Anderson and 

May, 1998). It becomes a great danger in 

society and the cause of many deaths, 

especially among the elderly, people with 

weak immunity, and people with chronic 

diseases. On March 11, 2020, the 

eradication of COVID-19 has become one 

of the world's most critical issues and 

challenges. Mathematical modeling of 

infectious diseases is essential for a deeper 

understanding of the disease's spread   

patterns and an assessment of control 

measures (Bailey, 1975). The two scientists, 

Kermack and McKendrick (1927), 

developed the first model to simulate 

infectious disease transmission. That is the 

starting point for inspiring many 

researchers (Kermack and McKendrick, 

1927).  Also, some studies are interested in 

the mathematical modeling of infectious 

diseases (Hethcote and Driessche, 1989; 

Moghadas and Gumel, 2003; Shereen et 

al., 2020). In this respect, the SIR model 

has described many epidemiological 

disorders (Khader and Babatin, 2014;   

Makinde,  2007;  Yano1  et al.,2016;  

Paul  et al.,  2022;  Brauer and  Castillo-

Chavez, 2001;  Das  and   Pal, 2018;  

Alshammari   and   Khan, 2021;  

Ibrahim  et al., 2023;  Blackwood,  2018;  

Shereen   and  Khan,  2020). 

 Numerous arithmetic systems have been 

suggested across literature to designate the 

epidemiological environment of infectious 

diseases in human beings (Diekmann et al., 

1990; Diekmann et al., 2009;  Martcheva,  

2015;  Boyce   and   Diprima, 2012; 

Brauer, 2001; Glendinning, 1994; 

Derrick   and  Grossman, 1976;  

Arrowsmith, 1983;  Ahmed  et al.,  2021;  

Kim  et al., 2008;  Canfell   et al., 2012 ). 

Their research methods depend on 

modeling     contact between individuals 

infected (or who have been infected) with 

diverse viral straining. To reach this goal, 

multiple SIR (sensitivity - infection - 

recoveries) models using specific 

parameters of cross immunity (Canfell   et 

al., 2012; Van de Velde et al., 2010). 

Analysis and study of these models showed 

that multiple strains of infectious diseases 

can persevere in human beings and that 

their pervasiveness can display self-

sustaining changeability over time.  

The main objective of this article is to 

discuss the qualitative analysis and stability 

of the SICQR model, which is one of many 

modifications of the standard SIR model. 

People with strong immunity are less 

susceptible than susceptible individuals. 
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from one person to another. Immunity 

boosters include pharmaceutical 

interventions, such as using drugs to treat 

and Strong immunity helps individuals 

recover quickly from the disease and 

reduce the chance of infection immunize 

susceptible people. It has been proven that 

strong immunity is one of the best ways to 

avoid the spread of infectious diseases. 

 The structure of the following paper: In 

Section 2 and 3 we introduce SICQR 

system, the qualitative analysis and stability 

of the SICQR model are described. Section 

4, SCSC method is used to solve the 

desired model.  Finally, we conclude the 

paper and give a discussion in Section 5. 

The Mathematical Model 

The model divides births into two groups: 

with and without passive immunity. 

Antibodies that in infants transmitted to them 

from the mother starting from the last months 

of pregnancy are called temporary passive 

immunity and protect them from viruses. The 

model could be written as 

 

 

                          (1)                                                

 

                                       

Where (1 − θ)  are infants without passive 

immunity, and are infants who have 

passive immunity where  

0 ≤ θ  1 

S(t),I(t),C(t),Q(t) and R(t) are measured by 

the derivatives  and  also,  

N = S + I + C + Q + R, (2) 

while its derivative is given by 

                                 (3)  

We have parameters β, µ, Λ, γ, δ, θ, α and 

σ are positive. Table (1) explains the 

meaning of the parameters. 

 

 

Fig. (1): S I C Q R Model flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 



Qualitative Analysis and Stability 

The model was evaluated 

qualitatively in region Φ. A qualitative 

analysis indicates that two equilibrium 

states exist in the intended model: 

equilibrium diseases free 

    

Which no disease is present (I=0) and 

endemic case at which is in the 

presence of disease, they are 

calculated by putting the system's right 

side equal zero. The two equilibrium 

cases and R0 are calculated. 

 

which means that   an algebraic 

system which can be solved with    

N∗ 
= S∗

 
+ I∗

 
+ C∗ 

+ Q∗ 
+ R∗,                 (4)                       

 

Table (1): The meaning of the symbols 

symbols Meaning 

β contact rate 

µ death by natural causes 

Λ birth ratio 

γ recovery rate 

δ isolation rate for infected 

individuals 

θ the proportion of births with 

passive immune 

α Strong immunity rate for 

susceptible 

σ the rate of infection reduction by 

treatment 

b the mortality rate from the disease 

We obtain 

      

 

 ,                                               (5)   

, 

    

Proposition 1:  

           
The quantities S(t), I(t), C(t), Q(t), and 

R(t) are positive, and 

 

is bounded 

Proof 

Since 

 ,  

 

                (6)                                          

,    

 

The result of integrating the two sides 

of (6) over the interval [0, t] becomes 

  

    

 

            

                                    (7)                                    
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Clearly  and are positive 

functions. 

. 

    

               

(8) 

  Now, 

Clearly, the feasible region 

is 

bounded and positivity region.  

We know that R0 indicates how fast the 

coronavirus spreads; it refers to the 

anticipated total number of cases in a 

population that are directly caused by 

infected case. R0 is the greatest absolute 

eigenvalue of the matrix FG 
−1 

(Diekmann et al., 2009). Both of the 

matrices G and F are known as 

                  (9)                

 ,               (10)               

    

(11) 

 .                 (12)                

This gives,  

               

(13) 

  The Jacobin matrix (Boyce and 

Diprima, 2012; Brauer and Castillo-

Chavez, 2001; Arrowsmith and Place, 

1983) at any point 

is

 

Theorem 1 

The disease- free equilibrium when 

is local stable unlike when  

is unstable. 

Proof: 

When  

the Jacobian matrix is 

 

This matrix's eigenvalues are 

 and 

The first four 

eigenvalues are negative and the fifth 

value will also be negative when  

 Clearly,  becomes asymptotic local 

stable when    and when  

becomes unstable. 

Theorem 2 

The endemic state  for  is local 

asymptotical stable. 

Proof: 
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Since 

 

  

 

the eigenvalues are (−µ−λ),(−γ −µ−λ) 

and where b = 

β
 
+α+ 2µ+βσ

 
> 0, c = 

β
2
σ

2
+(β +α+µ)(βσ +µ)+β

2
 > 

0, d = β
2   

(β σ+ µ) + β σα + (β
 
+ 

α + µ)(β
2
σ

2
) > 0. 

There are two negative eigenvalues λ1 = 

−µ, λ2 = −γ − µ, and other eigenvalues 

satisfy the equation λ3 + b λ2 + c λ + d = 0 by 

the Routh Stability Criterion (Derrick   

and Grossman, 1976; Arrowsmith 

1983),  is local asymptotical stable. 

Theorem 3 

The disease-free equilibrium point E0 of 

the proposed model for R0 < 1 is global 

asymptotical stable and unstable 

otherwise.  

Proof: 

a Liapounov function defined as  

V = I , 

, (14) 

it follows that, 

           

(15)         

It is obvious that in case R0 < 1 

and   in case R0 > 1, in addition, 

 if and only if I=0. Therefore, by 

LaSalle’s extension to Lyapunov’s 

principle (Derrick and Grossman, 

1976; Arrowsmith, 1983). E0 is 

globally asymptotically stable when R0 

< 1 and unstable when R0 > 1. 

Theorem 4 

When R0 > 1 and U < 0 the endemic 

state  
 
is 

globally asymptotically stable. 

Proof: 

Let Lyapunov function as 

+ +

+         (16)                                                              

= + + + 

,                                         (17)                                                                                                                                   

at steady state 

,  

   ,          

(18)                   

         

gives 

,  (19)                                                               
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It is obvious that  when    

S = S∗,    C = C∗,    Q = Q∗ 
,      I = I∗. 

Clearly, if  where, 

(20) 

 By LaSalle principle of invariance 

(Glendinning, 1994; Derrick, 1976).  E∗ 

is globally asymptotically stable in Φ if U 

<0.  

Numerical Solution Using SCSC 

Method 

To clarify the SCSC technique, first, We 

offer the recurrence formula that can be 

used to determine the polynomials of 

Chebyshev (Khader and Sweilam, 

2013; Snyder, 1966) which determined 

on the range [-1, 1] as  

Tm+1(y) = 2yTm(y) – Tm−1(y),     

T0(y) = 1,   T1(y) = y,   m = 1,2,...             

(21) 

It is understood that Tm(−1) = (−1)
m
, 

Tm(1) = 1. The Chebyshev polynomials 

Tm(y) of degree m have the following 

analytic form: 

      (22) 

where [m/2] represents the integer 

component of m/2. When orthogonally 

exists, 

  (23)                                               

By changing the variable y = 2xL − 1, we 

define shifted Chebyshev polynomials, 

which can be used on the interval [0, L]. 

Because of this, there is a description of 

the shifted Chebyshev polynomials as 

).            (24) 

of degree m has the following 

analytic form  

m=2,3,…         

Where,  

These polynomials’ orthogonally 

condition is 

     (25)                                                         

the weight function as 

,  with 

h0 = 2, hk = 1, k ⩾ 1. The square 

integrabel function defined in [0, n], Z(x) 

can be represented as shifted Chebyshev 

polynomials. 

 ,                    (26)                           

where the coefficients cm are defined as 

follows 

      (27)                                   

to find the model's numerical 

solution. We first provide a 

convergence analysis of the 

suggested formula. 



 

54 Kamel et al., (2024) 

Theorem 5 (Snyder, 1966) 

The sum of the absolute values of all the 

disregarded coefficients serves as a 

boundary for the inaccuracy in 

approximating X(t) by the sum of its first 

m terms. If =                             

(28) 

             

t  

To solve the model using the SCSC 

method. The main steps of the procedure 

solution can be summarized as follows  

Step (1): we first approximation 

 and C(t) by using  N 

terms of 

and .  

 

 

            (29) 

 

 

Where, , , ,  and  are 

constants to be determined. By 

applying this approximation to the 

model we obtain 

 

 

 

 

 

,                                                  (30)                                                  

For m=0,1,..., 5, the initial conditions 

give equations as follows 

  

 

       

(31) 

Step (2): Collocate Eq.(30) at the 5h 

points. For a suitable collocation points, 

use the of the SCSC roots . 

Step (3): An algebraic system is 

represented by the equations derived in 

step 2 and the initial conditions with 

5(h+1) of unknowns. 

The numerical solutions obtained by the 

SCSC method show the spread of the 

virus among the general public. 

Mathematic 11 was used to create all of 

the codes. The parameter values used are 

µ = 0.04, θ = 0.3, Λ = 0.1, σ = 0.15, 

 δ = 0.09, γ = 0.1, β = 4.2, 

α = 0, 0.5, 0.9, 1.5, b=0.002 , 

 S(0) = 0.5, I(0) = 0.2, C(0) = 0,  

Q(0) = 0, R(0) = 0.3. 
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 Fig. (2): The impact of changing α on  

susceptible 
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Fig. (3): The influence of various α values on 

infected 
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Fig. (4): The influence of various α values 

on people with strong immunity 
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Fig. (5): The influence of various α values on 

quarantines 
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Fig. (6): The influence of various α values on 

recovered 

Fig. (7): The impact of isolation rate on the 

infected people 
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 Fig. (8): Contact rate's effect on the infected 

people 

Figure (2) represents the relationship 

between susceptible individuals when α 

values change over time. We notice that 

the number of susceptible people gets 

smaller with time. When the 

number of susceptible individuals was as 

large as possible. When α = 0.5, the 

number of susceptible individuals 

decreased as indicated by the blue curve. 

By increasing the value of α from 0 to 1.5, 

as shown by the green curve the number 

of susceptible individuals decreases until 

it becomes a small number. Figures 2 to 6 

show the importance of strong immunity 

and its importance in controlling the 

spread of disease. One can see from 

figures 3, 4, 5, and 6 that by increasing 

the value of α the number of infected and 

quarantine decreases with time, but the 

number of recoveries is unaffected. 

These figures show the importance of 

strong immunity and its importance in 

controlling the spread of disease. Strong 

immunity helps individuals resist and 

recover from disease and reduces the 

chance of transmission of the disease 

from one person to another. In infectious 

diseases, the number of susceptible 

people plays a significant role in the 

disease's transmission and development 

into an epidemic. It is necessary to use 

medication or vaccination to strengthen 

susceptible people's immunity. 

Initially, when α = 0 (no treatment) 

became , the illness was 

clearly spreading quickly and becoming 

an epidemic gradually. The value of   

declines as α is increased and the number 

of infected and susceptible persons 

decreases. 

 Conclusions and Remarks 

Studying infectious diseases, 

especially COVID-19, is crucial for 

understanding their transmission, 

developing effective treatments, and 

implementing preventive measures. This 

knowledge helps in controlling outbreaks, 

protecting public health, and advancing 

medical science to be better prepared for 

future challenges.  A class of SIR 

modeling with vital behavior and a 

bounding community has been introduced 

in this paper. The SICQR model has been 

offered as a mathematical model for 

infectious diseases such as (COVID-19). 

According to qualitative analysis, the 

SICQR model has two equilibrium cases: 

equilibrium diseases free  and 
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equilibrium endemic . The stability 

revealed that  was local and global 

asymptotically stable whenever  <1. 

Unlike  it was global and local 

asymptotically stable whenever  >1. 

The SICQR model has been resolved 

using the SCSC method. This method has 

the ability to transform the system under 

study into an algebraic system of 

equations, which is easy to solve by using 

any iterative methods. Graphical 

illustrations of the outcomes are given. 

The numerical analysis with various 

values for the parameter  α was estimated 

to explain the importance of strong 

immunity in disease control. The 

mathematic software was used for 

computing mathematical simulations. 
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 R Q C I Sدراسة  عددية  ونوعية   لنووذج   الوباء     

 لباقي عبدالسلامرشا هحود فرغلي, هاله عواد عبدا , هدي فرغل احود,  هدي عبدالرحون كاهل

 جاهعة الونيا - كلية العلوم -قسن الرياضيات

ٌت فً غٍش الخطً دٌٌبهٍكٍبث اًخقبل الأهشاض الوعذ RQCISٌوورج لششح  ٌخٌبول البحث الحبلى

الفئه الوعشضه والفئه الوصببه والأفشاد روي  وببئٍت: خوس أقسبمج على الوجخوع. ٌحخوي هزا الٌوور

ٌوخلك الٌوورج الوقخشح حبلاث حواصى . و الحجش الصحً والوخعبفٍي ىو الفئه الوعضوله ف الوٌبعت القوٌت

هخخلفت كخواصى هخوطي وحواصى خبلً هي الأهشاض. ٌصف هزا الٌوورج أهوٍت الوٌبعت القوٌت لأفشاد 

د الحلول ( للٌوورج الوقخشح لإٌجب RCRC) . حن اسخخذام حقٌٍت91-كوفٍذوببء الوجخوع للسٍطشة على اًخشبس 

خقوٌت هٌبعت أفشاد الوجخوع فى ل اٌجببى حأثٍشوجود  البحثًخبئج  جوضحأللٌوورج الوطلوة. و العذدٌت

 .السٍطشة على اًخشبس الوشض

 

 


