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The current paper offers an effective numerical mechanism for
solving two models of variable order (VO) linear/nonlinear delay
differential equations; the models represent the variable order delay
differential equations (VODDES) and the variable order Volterra delay
integro-differential equations (VO-VDIDES) with initial functions. In
the proposed mechanism, the method of steps is used to transfer the VO
delay models (VO-DMs) into variable order non delay ones with initial
conditions. After a novel operational matrix (OM) of VO derivative of
the shifted fractional Gegenbauer polynomials (SFGPSs) injunction with
the spectral collocation method are utilized to transfer the
aforementioned problem into a system of algebraic equations, which is
simple to solve. The error estimation of the proposed technique is
established through the article. The efficiency and accuracy of the
proposed technique are verified by applying it to several numerical
delay differential equations with constant or variable delay. The
obtained numerical results are compared with other published data in
the existing literature to expose the accuracy and efficiency of the

proposed technique.
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Introduction

Recently, fractional calculus has
received a lot of interest of many researchers;
it allows us to analyze integration and
differentiation of any order that isn’t
necessarily an integer. The fractional operator
can better describe a variety of real-world
phenomena than the integer order calculus [19,
1, 20]. The most familiar types of the fractional
integrals and derivatives are the constant-order
(CO) and VO. According to many researchers
in recent years, many orders of differential
equations that describe natural phenomena
with fractional order can alter across time and
space [11]. The VO models have gotten a lot of
attentions, due to their appropriateness in
simulating a wide range of phenomena across
various sectors of science and engineering,
such as anomalous diffusion [32], viscoelastic
mechanics [13], control systems [21],
petroleum engineering [27], and many other
branches of physics and engineering [33, 14].
In 2016, Almeida et al. [1] looked into the
topic of the population expansion problem by
utilizing a fractional differential equation with
a constant fractional-order to explain the
dynamics. They expanded on previous research
in 2018 [2] by considering the order as a
function of time. In comparison to the constant
order model, their research showed that the VO
model is far more effective at estimating global
population rise. Delay differential equation
(DDE) is differed from the ordinary
differential equation in that the derivative at
every time is reliant on the solution at previous
times. The DDE is also called a difference-
differential equation or functional differential
equation or an equation with a time lag or a
differential equation with deviating arguments.
Distinct forms of DDEs are existed, each with
a different sort of delay, such as time-

e VO-DDEs
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dependent delay, neutral delay, constant delay,
state-dependent delay, stochastic delay, and so
forth. DDEs are used in a variety of fields,
including biology, electrical networks, and
population dynamics; get back to [30, 10] and
their references. Fractional delay models
(FDMs) are gaining popularity as a new branch
of nonlinear analysis. They provide a more
natural foundation for modeling
mathematically many real-world phenomena.
They have a variety of applications, like
electrodynamics,  astrophysics,  nonlinear
dynamical systems, probability theory on
algebraic structure [24]. In this area,
tremendous progress has been made, with the
majority of these publications devoted to the
study of FDMs. On the other hand, classical
calculus, cannot always provide the most
accurate representation of some complicated
events, such as those observed in biological
systems and medicine, so VO-DDEs have
arisen. It is known that the exact solution (ES)
for such models is not available, so the main
objective of this research article is to present
and develop an accurate and effective
numerical technique to solve some VO-DDEs.
There are few works that appeared in this
direction like; Abdelkawy [3] proposed the
shifted fractional Jacobi collocation method for
solving VO-DDEs; Dehghan [15] proposed
numerical approach for solving a class of VO
fractional functional boundary value problems
(BVPs); Yang et al [31] proposed an algorithm
depended on the reproducing kernel splines
method for solving VO-DDEs; Li et al., [23]
solved the VO-DDEs using Reproducing
kernel method; Bhrawy and Zaky [12] used
Chebyshev operational matrix to solve delay
Dirichlet boundary value problem with a type
of VO Caputo fractional derivative; Li and Wu.
[22] presented numerical method for solving
VO functional BVPs.

The primary goal of this research is to extract an accurate numerical method to solve the following
models:

Dy (1) = Bt y(®),y(t—0)to < t < t,,0 <v(t) < 1, (11)

With the initial function (IF)
y(t) =g@), tel-10]

(1.2)
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Where v(t). g(®) and F{t’}r(t}’y(t_ﬂ} are given functions which may be linear/nonlinear

1 I; t_:l

functions, * is the delay which may be constant or variable, “¢t  denotes the VO Caputo

derivative and ¥(1) is unknown function.
e VO-VDIDES

D:':r}}-‘(t} = fi(t,y()) + j E(y(e—D)deto =t =t,,0<v(t) =1, (1.3)

With the IF
vite) = v,
y(t) = qlt), t € [—1. 1],

(1.4)

Where v(2), q(), f1'[t’ Jr(t}} and H(-}'(g - T}} are linear/non-linear functions, * is the delay which

1 I; r_:l

may be constant or variable, "t  denotes the VO Caputo derivative and ¥() is unknown function.

Spectral techniques are one of the most
effective and powerful numerical algorithms
for solving differential and integral equations
with integer and non-integer order derivatives.
Spectral approaches such as pseudo spectral
[4], Galerkin [5], and Tau [17] can be
produced from a weighted residual method.
The spectral collocation method is becoming
more widely used, with applications in a
variety of fields. It is characterized by
exponential rates of convergence, great
precision, ease of use, and effectiveness in
handling a variety of problems. Besides the
spectral methods, operational matrices are
commonly utilized for solving these types of
equations [17, 5]. The current paper is based
on the shifted fractional Gegenbauer
polynomials for building the variable-order
operational matrix of derivatives. Our choice
of SFGPs gets back to several characteristics
of these polynomials:

e For a small set of spectral expansion terms,
they attain quick convergence rates.

e The Gegenbauer polynomials (GPs) have
been proven to be particularly efficient in
solving a variety of problems in numerous
research [17, 6, 18, 7, 16].

e SFGPs are determined by two parameters «

and # For the first parameter a>-05

Each change of this parameter creates a
new polynomial like the first kind of
shifted fractional Chebyshev polynomials

(SFCPs) with the parameter =0 the
second kind of SFCPs with the

parameter‘x =1 and the shifted fractional

Legendre polynomials (SFLPs) with the
1

-

s .
parameter 2 The second parameter

g =0, plays an important role in dealing

with the problems which have singular or
non-smooth solutions by suitably chosen of
its value.

The SFGPs’ OM techniques have been
proven effectiveness in solving many
problems. Ahmed and Melad [8] derived a
new SFGOM of differentiation and
integration in conjunction with the spectral
collocation method to solve VO
pantograph-delay differential equations and
VO pantograph Volterra delay integro-
differential equations, EI-Gindy et al., [19]
used different kinds of SFGOMs of the VO
differentiation and integration to solve the
VO Fredholm—Volterra integro-differential
equations, systems of VO-FV-IDEs and
VO Volterra partial integro-differential
equations, Ahmed and Melad [9] extracted
a novel numerical strategy that depends on
SFGPs to solve nonlinear singular Emden-
Fowler VO-DMs, EL-Kalaawy et al. [18]
proposed SFGOM of integration to
numerically find the solution of fractional
variation problems and fractional optimal
control problems.

In this paper, the method of steps is used to
convert the VO-DMs (1.1), (1.2) , (1.3) and
(1.4) into non delay ones. After, A new
shifted fractional Gegenbauer operational
matrix (SFGOM) of Caputo VO derivatives
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in conjunction with the spectral collocation
method is used to handle the resulting
equations. As a result, systems of algebraic
equations are obtained, these systems are
easily solved using an iterative process.

This paper is arranged as follows. In
Section 2, we present some preliminaries of

Preliminaries and Definitions:
Caputo variable order derivative

Ahmed et al., 2022

VO calculus and SFGPs. In Section 3, the
SFGOM of the VO derivative is derived
and the procedure solution of the present
technique is introduced. In Section 4, some
illustrative problems are offered. Section 5
ends the paper with a conclusion.

For physical modeling Combira [13] derived the following VO Caputo differential operator

_1 r
(1 —w(t)) Jo+

(0 —y@)

— —v(t) d
(t-2%) y'(&)dE + 1_.{1_ {t}}

(2.1)

1 '
where y() €CH[0,L] is a continuous differentiable function, (® be a positive continuous bounded and

0<vit) =1,y
v, t

is reduced to

From definition (2.2), the following formula is established

t

r + " -
is the first integer derivative (0 }, and (0 jlare the right-hand and left-hand limits of

0, respectively. If the beginning time is considered in the ideal situation, then definition (2.1)

V(8 1 e E)v(B e
DY = rrm oy ) OOy (D 22)

T(k + 1)

Mathematical preliminaries of Gegenbauer polynomials
Gegenbauer polynomials

The GPs .F {x} ' of degree i € Z7, and defined with the parameter

DYk — T(k+1—v(t) thv®,  for k€ Ny and k = m,

0, for k€ Ny and k < m,

-1
o > —
z are a sequence of real

polynomials in the finite domain [—1,1]. They are a family of orthogonal polynomials which has many
applications [17].

(e
A suitable standardization of the GPs ¢ () dates back to Doha [16], where the GPs can be

represented by

5! I‘(a +%] (E__E 1)
r(j+a+s3) g

or equivalently

a6y f= 1, j }= 0,12, .....,

where 5 “ )

C;.:E}{x} =

The GPs’ analytical version is provided by,

(x),j=012,....

are the Jacobi polynomials (JPs) of degree j.
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i ) 1 .
. _ j'irae+sIT(j+k+2a) + 10K
C}.‘E}(x] - Z(—n}—k ( : 2) (x ) (2.4)
F(k+a+3)rG+2a)G—Re 2
e The following handy recurrence equation can be used to create the GPs
G +20)C 50 =20+ a)xC () €0, =1 (2.5)

e The orthogonality relation is satisfied by the GPs
1
€@0,620) = | PP W 0@ ax=1"s,,
-1
w '@ (x) denotes the weight function, it is an even function that is determined by the relation
. 1
w@(x) = (1-x1)* 2,
and
. 2x—1 -| 2 1
IE} ”CE}(}L 2 I‘(a+—}
(j+ a)T(j + 2a)’
is the normalization factor and 9:. represents the Kronecker delta function.
¢ Now, we construct the fractional Gegenbauer—Gauss quadrature rule, for any
Fl) € L2 oy [-11],

1 N
j_ J@e @ (x)dx ¥ Z my £(%)
=o

'n'ﬂ
where @wj -] =

(2.6)

0L,... N, are the correspondmg Christoffel numbers defined by

R 1‘2@ RGO 27 @7)

where 41 getting from the relation (2.6).
Shifted fractional Gegenbauer polynomials

e The explicit analytic form of the SFGPs is given as

1

jirfa+5|rj+k+2 g MK

Cozte () = Z( 1}“‘ (e 3)76 “ (t t”) (2.8)
v (k+a+ )r(;+2a}(; i1k i o

e For # =1, the SFGPS reduced to the shifted GPs in the interval [to. tf]'
e The orthogonal relation of SFGPs is

j (@ (1)@ (1) 4,0 m“}(t}dt A 5 (2.9)

tot i tot o Eptf r 5 T

0l (6) = (4 — 1) (8 — t#)

where “rory *is the weight function, and

Za—-1;11m2 =
) _ ((tf —tg)¢ 22T (a+2}
fotf] 2 G+l +2a)’
is the normalization factor and % represents the Kronecker delta function.

e The SFGPs comprise unlimited number of orthogonal polynomials, among them the shifted

™ (1) =c% (p), . .
fractional order CPs of the first kind f:vff i Ept fol the shifted fractional order CPs of the
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U™ () =a+10c™ @),

second kind fn tf ot il and the shifted fractional order LPs
/ (Zu)
t'u::lt‘fz(t} Ctzt‘fz(t}

clewd (@, t* j=0,..,N.

e We denote the zeros of the SFGPs ~fetf-+1-" hy totf.5 )

1
) _ (E’J-.I.-J}- + 1);

EntFNG T 2

where t0.5:J = 0, s N ape the zeros of Cw+1m" By using the regular Gegenbauer—Gauss gquadra-
ture, the fractional Gegenbauer-Gauss quadrature rule can be established, for any

f( A )E Pynsa(tort
(Z55)* ) € Paaa(toty), e e

t'f 1
(t == @@l (——] Jat,
j 'm#:' V() dt = ({ D:} ) j_l () (t-l—'l)#

ff‘f 2

2 N l
{tf—tc'}# (a) ty; T 1\u
G S i ()

j=o
v
— L)
- Z r,:.,rf'-.-,_;uf( ru.t‘f,u".',._;l)
=
m' L)
where i gre the Christoffel numbers of the SFGPs that are given by
(@) (tr— )" - (a) .
th.t‘f,".l',_;l' = T EF,'.,.‘J}' = ﬂ, "'JN.I (2.1{]}
()

where ®N.j are defined by (2.7).
e The square integrable function ¥(®) € [to. tr] can pe approximated by SFGPs as

VO = ) Feges CE2(0),
i=e

where the coefficients ~ *tf7 are determined by
Feogs = G [ 0) WS O 0t =0, . (211)

If we approximat ¥ (t)e by the first (N+1)-terms, then we can write

(B = yy(8) = Z}W c (o), (212)
The approximation of function ¥ (£) can be written in the vector form as
y(t) = YT a(p), (2.13)
Where Y* =[Yo ¥y, ol is the shifted Gegenbauer coefficient vector, and
B(2) = [C,(0), €50 (0), oo, €L (O] = ATy (@), (2:14)

is the SFG vector.
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Error estimation

(@) _ () L wmltorty]
Let 'Efrvff N Sptm{cf ot fr ﬂ'(t} Cf ok fr 1(t} Cfnaffﬂ"* ®} and ¥(t) pe an arbitrary element in  “ter

| m.u:l ! ﬂ’.',,'l:'
Sinc “teffNe 1s a finite dimensional vector space, ¥(t) has the unique best approximation out of ~teffV

vylt) EC

like fwffﬂ"* such that

Vo eCI L Iy — @l = ly(® - g @l

where ”}(t} II= v {}r(t}_l }r(t} ).

Theorem 2.1

Suppose that the function D¥ }'E} € Clto.t;] nE[0.1] for k = 0,1,..,N — L ¥x(t) is the best
'ﬂ:-

approximation to ¥(t) from Efwffﬂ"* then the error bound is presented as follow

. 27 1u
Hy N -] ( () ) o
; ¥ P L —— | ! L. e —
Iy (e) (2 = N+t 1:|*JEJ=Dmfl:vff*"-'s.i' tfl:l-'rf-"""-.;' to

) (2.15)

where ||DI::"."+1:'#-'-}.*(t}|| = Hwt E |_tI}J t_f]-

Proof

We consider the generalized Taylor formula [26]

N )
oy B ik DWHDry(¢) (v+1)
y(t) —;mﬂ #}'(tu}+f‘((w+1}_u.+ 1}(3— tg) LK,

£ € [ty t], vt € [to, t] Lot

with

Py(t) = Zr( L)

Then,

RS NITI
I}’(t}—ﬂﬁ(m:‘ D\WFLky(£)

M((N+1)pu+1)

(t — tﬁ}iﬁﬂ}# .

Because of yn(t) is the best square approximation function of }’(t}, we can gain

lv(£) — vy (@13 = lly(t) — Py(0I113,

- j W (O(y(6) — Py(®) at,

_ f e ) DEN‘FI}#}’(E} _ (N$1) ):
—L fnaff(}(l"{(N+ 1}#+1}(t )™ | dt,

(H,)?
2 HIN+Dp+1) ),

(r {rf — )" 2 t — tg) 2N+ ey,
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H 32 _ ) . 2N+ D
= — ( f-l} mxm#}_.(t__#} ) —tﬂ) J
TN+ 1Du+1) — totf N\ totp L]
_;l_
m'lﬁ:,m_ .
where "7 are the Christoffel numbers of the SFGPs which are given by (2.10). By applying the

square roots, the proof is completed.
The Methodology

Shifted Fractional Gegenbauer Operational Matrix (SFGOM)

In this subsection, we will deduced the OM of the VO fractional derivative for the SFG vector
t € |tnts]
where

From relation (2. 8) by using VO Caputo fractional derivative, we can write

wr} 'mu}(ﬂ Z( ik HF(J+%)F(I+I¢+ZQ}

rulrfi

(1),

DY (e~ to) ¥,

r

F(k ta +%) F(i +2a)(@ — k)1 k! (8 — tg)#*

itT(a +%) I +k + 26)T(uk + 1)

= (—1)i* (t— tl}};.'.k—v':r}J (3.1

ot r(c+a+ %) G+ 2a) (i — 1) ket (£ — o) “T(pk + 1 — v(©))
. (t—t };Lk—v':t} . . .
The function o can be written as a series of N + 1 terms of SFG polynomials,
N
(t— tu}#k—vir} = Zt}(’,‘;ﬁﬁ (t), (3.2)
=
where
. 1 [
b =—zm J; (t# — )™ { —t#)" 2 t— £ )—v(D) Cf’r‘;}}(t}dt (3.3)
L
totf 2(3 + a}I‘U +2a) '
1
. I (e+5)I(+F+2a) £ VT
Ct () = Z( s 27 : 2 (t - f) .69
= F(f+a+3)rG+2a)(G—prp s —to
;
. 201 fj+ea)rj+r+2 tf . 1
L= Z E } Ui DU L]+ 2e) #f+2c£#_" (t — to)#kvidTaf (tr — £)" z(tf
Sr(f+a+3)r(a+3)G- (e —to) to

—t#)" 24t
By using (3.4) and (3.5) into (3.3), we have

i) 0 N
—1)i-f(; ; 2
e o T
] pf+Zap
S (f+a+35)r(a+5) G- N (e —to) 2 =
g 21-2a(_1)IF (j + )T + f + 20) - -
= Z Z mgmrfJ}'(tfmffa}' — LKA, (36)

Gr(r+a+3)r(a+3) G-t (g —1) 4
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Now, by employing (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6) we obtain:

priicten i

t Entfd

£ 1!F(a+%)r(z+k+2a}rmk+1}

= (-1)i* E Cem (o),
k;r}'l_;u:l} r (k +a+ %) r(i+ 2a)(i — k)1 k!t — to) Tk + 1 —v(£)) Tt
N i
= Z Z fi,_;l',k C;;ﬁ}(t}i = ﬂj-lj vany N (3.?}
F=0 A\ e=lvied]
where 4% i given by
Eije =EXTY, (3.8)
where
i _ 1 .
- it T (@ +5) M+ ke + 20T (uk + 1)
5= —1)i- J
o r(k+a+ %) (i +2a) (i — 101 k! (g — £0) “T(uk + 1 - v(©®)
i - . N
Y = Z 21—;5:(_-1}_:—;’(}- + Q}F(J‘ + f + 2'1} Z m':m#:' (I,' t },l,ak—w:r}+,l,af
- 1 1 3 pf+lou—2Io tt iy~ Cet ] '
Sr(f+a+z)r(a+3)G-Pifi(t—t) =
(o)

w,
where “*f¥ is the Christoffel numbers which is determined by (2.10).

So, in a vector form, the VO fractional derivative SFGP is written as
D" &(t) = PrDa(t), (3.9)

t € [to.t At) . N Wt) .
where (0% and ; is called the OM of fractional derivative of order * (®) in the Caputo sense.

Procedure solution of the proposed Technique
VO-DDEs with initial function

To solve the VO-DDEs, a numerical strategy t€[0:7] e vO-DDES (11) and (1.2)

are

based on the method of steps in addition to the converted to VO non-delay differential

SFGOMs combined with the spectral
collocation approach will be used. Firstly, for

D' y(0) = F(ty®,gt—1), 0=t = t,, (3.10)

with the IC,
y(0) = g(0), (3.11)

Now in order to solve (3.10) and (3.11) by using the OM of SFGPs, we approximate
terms of SFGPs as follows

N
y(t) = yy(t) = Zfrwrﬁj C;;ﬁ-(t} = ¥YT&(t), (312)
i=o

t:..tf_._;l

J.'II
D@y () ~ DY Z;M ﬁ}.c“"“}.(t} = v7 D (a(p),
=o

equation by applying the method of steps, as

(&), 0 y(®

(3.13)
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By using the VO-OM (3.9),

DYy (8) = YT @(2). (3.14)
By substituting from (3.12), (3.13) and (3.14) into (3.10) and (3.11) we get
YTP() @(t) = F(t, YT & (1), gt — 1)), (3.15)
with the IC,
¥T&(0) = g(0). (3.16)
By collocating (3.15) and (3.16) at the By nodes, the following collocating scheme is obtained
YRV @(t,) = F(t, YT @(t,),g8(t, — 1)), (317)
with the IC,
¥T&(0) = g(0). (3.18)
So system of (N+1) algebraic equations with After, by assuming that g(®) =yu(D) 4
the negeissaryv SFG coefficients applying the same strategy the solution over
J"‘ ,'J_-il: pdy e AW . .
Fotfd is attained, which can be the interval [ 2% js obtained, and so on by
solved using an appropriate iterative process. repeating the process, the solutions over the
As a result, the approximate solution ya(t) other intervals [27:37h 3n.47l it we pass
[0, 7].

can be determined over the interval the time = are computed.

VO-VDIDES with initial function
In order to solve the VO-VDIDES for ¢ € [0:7] the VO-VDIDES (1.3) and (1.4) are converted to VO
Volterra non-delay integro-differential equation by applying the method of steps, as

D:E:}},{t} = fi(t,v(®) +j K(g(¢—1))dE to=t= tr, 0<v(t) =1, (3.19)

with the IC,
y(ts) = v, (3.20)

i . . y(£), DXy (1)
Now in order to solve (3.19) and (3.20) by using the OM of SFGPs, we approximate e in

terms of SFGPs as follows

N
yu(t) = Z;’Erwrﬁ; c ;‘;ﬁ-(t} = YT (1), (3.21)
=0
N
DYy % DO Y Fupey €520 | = v7 DY 000), (3:22)
j=o

By using the VO-OM (3.9), Eq. (3.22) can be written as
D 1n~t_:'}_,ﬁ (E’} = yTpvit) q:,(ﬂ (323}

13

Substitute from (3.21), (3.2) and (3.23) into (3.19) and (3.20), gives
¥RV &(t) = £, (£, YT & (1)) + j "(ate —D)ae, (3.249)

1

with the IC
YT @(0) = yq. (3.25)
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This results system of (N+1) algebraic equations with the necessary SFG coefficients

ftwrf,}'ij = ﬂj'l, i N . . . . . .
which can be solved using any iterative process. As a result, the estimated solution

ya(t) can be computed over the interval [0, 7]. After, by assuming that q(t) = yw(®) and applying the

same scheme the solution over the interval [r, 27] is obtained, and so on by using the same procedure,

[27, 31], [3T, 41]

. . . . L
the solutions over the other intervals ' until we pass the time T are computed.

Results and discussion

We’ll go over five problems in this section to check the applicability and efficiency of the proposed
approach. The software was created in Mathematica version 12 using a Dell laptop with an Intel(R)
Core(TM) i3 CPU M 370@ 2.40 GHz and 3.00GB RAM configuration. The outcomes of our method
are compared to those of other published numerical methodologies in the literature. The results
evaluated in this article are calculated via

e The absolute errors (AES) computed by the relation
E(t,)=|v(t,) —vylt;)l, 1=i=N,

Where y(t:) and yalt:) represent the ES and the approximate solution (AS), respectively.
e The maximum absolute errors (MAES) computed by the relation
L. = max{E(t):Vt; €0, ¢].
o A

e Convergence order (CO)

o (e:r‘:r"ﬂr(Nl} )

error{N;)
log (N_::] J
Ny
where error(N) is the error associated with a polynomial of degree N.

e The computational time (CPU time) with seconds.

VO-DDEs problems

Problem (1):

Consider the following VO-DDEs,

DXy = —y(t—1) —y(®O +F(@®), 0<v() =1, 0=t=1,

ywit)=0, —t=t=0

Co =

v =1-5
where <
& til}—v':t:'+ '_]_|[]:|-']'J 0=t =1,
r(11 —v(t))
Fe) = r(ii g10-vie) 4 1010 4 (3 —7)10 <t=1
(11— v(e) Ve Tere
and the ES is

1&}_{ 0, T<t=0,
Y =10 g =1,
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(b)

= Exact solution

0.00 |-

2. (a) The AEs graph of y(t). (b) The graph of ES and AS in [0,1]

Table (1): The AEs of problem (1) at £ = 1,a = 0.5 and different values of N.

= * Approximate solution ,’
]
1
/
/
/
/
/ J
0.2 0.4 0.6 0.8 1.0

t €[0,0.5]
t N =3 N=5 N=7 N=09
0.0 1.0842 x 107%° 5.96311 x107%° 2.43945 x 107 8.80914 x 107%
0.1 6.43967 x 107 1.91959 x 107 1.38223 x107° 1.21526 x 1077
0.2 6.18936 x 10~ 1.47958 x 107 1.1665 x 1075 1.02796 x 1077
0.3 4.26738 x 107 1.29684 x 107 9.50311 x 10°° 8.58482 x 1078
0.4 4.8735x107* 9.92666 x 10~° 7.85919 x 1078 7.14791 x 1078
05 6.28599 x 107 1.15972 x 107 7.58464 x 107° 6.47324 x107°
CPU Time 0.390003 11.9653 84.5837 478.892
t€(0.5,1]
t N =3 N =5 N=7 N =9
0.6 9.00422 x 1072 3.74286 x107° 2.99503 x 10~ 2.96231 x 107
0.7 5.54744 x 107 1.98243 x 1072 3.61941 x 107 3.54816 x 107
0.8 2.12647 x 1072 1.83176 x107° 3.78847 x 107 3.78014 x 107
0.9 4.62955 x 1072 1.10873 x107° 3.88693 x 107 3.87305 x 107
1.0 468614 x 107 1.73337 x 1072 3.90701 x 10~ 3.89935 x 107
CPU Time 0.374402 10.7329 88.1094 1159.03
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Table (2): The AEs of problem (1) at £ = 1,N = 7 and different values of &,

t €[0,0.5]

t a=-0.1 a=0 a=0.5 a=1
0.0 1.49078 x 107%° 6.77626 x 1072 2.43945 x 10719 2.81893 x 10718
0.1 1.05739 x107° 1.11304 x107° 1.38223 x107° 8.72698 x 10~
0.2 9.12765 x107® 9.55903 x 107° 1.1665 x 10~ 5.54573 x 107
03 7.32909 x107° 7.70015 x 107° 9.50311 x 107° 3.51214 x10™*
0.4 6.13383 x10°° 6.42682 x10°° 7.85919 x107° 3.49391 x 10~
05 5.78045 x10°° 6.08383 x 10°° 7.58464 x 107 4.55005 x 107

te(0.5,1]

t a=-0.1 a=0 a=0.5 a=1
0.6 2.78292 x 107 2.83073 x 107 2.99503 x 107 2.78292 x107*
0.7 3.5277 x10™* 3.54745 x 107 3.61941 x 107 3.5277 x10™*
0.8 3.68984 x 107 3.71341 x 107 3.78847 x 107 3.68984 x 107
0.9 3.85244 x 107 3.85908 x 10~ 3.88693 x 10~ 3.85244 x 10~
1.0 3.85626 x 107 3.86796 x 10~ 3.90701 x 10~ 3.85626 x 10~

Tables 1 and 2 list the numerical results of
problem (1), which are graphically depicted in
Figs. 1(a-b). In Table 1, we tabulated CPU time
at p=1,7=05a=05,v(t)=1—-1¢,/2
and calculated the AEs at different values of N
using the SFGPs.  The numerical results
illustrate the efficiency of the proposed method.

Problem (2): Houseflies model
Consider the following VO-DDEs,

Table 2 also shows the AEs for different a
values. In Fig. 1(a), We plot the AEs between

the ES the AS at #=1LN=7
and @ = 0.5 to demonstrate the convergence of

the suggested approach. The harmony between
the ES and AS is depicted in Fig. 1(b).

and

D:':r}}-‘(t} =—dy(t) + eyt —)(k—czy(t— 1)), 0<v(t) =1, t =0,
v(t) = 160,t € [-1, 0].
Forv(t) =1, k= 0.5107,¢c = 1.81,z = 0.000226,d = 0.147,and T = 3 the ES [26] is
20175 16495 —tere
- 1000 =t=3
(0 23 23 ©
¥ 49221 —wrerenr 16117t —w7eisst 11483 122101 —were
19 ° 60 7 17 o PEEED
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Fig. (2): The numerical results of the proposed technique for problem (2) at N=7, and

o= 0.5 vit) = 1.

Table (3): The AEs of problem (2) at p=1a=1v)= E and distinct values of N.
te [0, 3]

t N =5 N=7 N=9

0.0 2.84217 x107%¢ 0 5.68434 x 107

0.6 1.104 x 10~ 2.8386015 x 107° 2.84081 x107°

1.2 1.25377 x107* 5.4347272 x 107 5.43676 x 10~°

1.8 1.4525 x 107 7.8116295 x 107 7.81377 x107°

2.4 1.59673 x 107 9.9879271 x107° 9.98924 x10°°

3.0 1.79408 x 10~ 1.1980559 x 107 1.19819 x 107
CPU Time 7.61285 75.5981 499.827

te (3, 6]

t N=5 N=7 N =9

36 1.65604 x 1072 2.9999411 x 1073 8.07861 x 107

42 1.44811 x1072 2.7245224 x 1073 6.67153 x 107

48 1.35702 x 1072 2.4710056 x 107 5.70991 x 107

5.4 1.21369 x 1072 2.2371433 x 1072 5.68967 x 107

6.0 1.18317 x1072 2.0194911 x 1073 3.85297 x 107
CPU Time 7.78445 89.607 535.817
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Table (4): Numerical comparison of the numerical results of problem (2) with Ref. [26] at
n=1 a=1vit)=1and N =5

te [0, 3]
t Exact Present method Ref. [26]
vt =1 v(t)=1 v(t) = 0.9 v(t) =0.75 vt =1 v(t)=0.9 v(t) =0.75
0.0 160 160 160 160 160 160 160
0.6 220.54544 220.54541 222.677243 226.348405 220.5461 228.2375 | 241.5848
1.2 275.97949 275.97944 274.683694 272.657319 275.9811 281.6995 | 289.7538
1.8 326.73368 326.73360 319.732418 309.247175 326.7352 326.0291 | 322.5902
2.4 373.20309 373.20299 359.663813 340.152297 373.2043 364.9633 | 350.5524
3.0 415.74944 415.74932 395.371548 366.723465 415.7506 400.3329 | 376.4743
te (3, 6]
t Exact Present method Ref. [26]
V() =1 v(t) =1 v(t) =0.9 v(t) =0.75 v(t)=1 v(t)=0.9 v(t) =0.75
36 466.46112 466.46193 452.175703 433517535 476.1586 456.7157 427.6485
42 532.81911 532.81977 518.642805 498.134288 543.1325 517.9783 481.7216
48 609.31444 609.31501 590.141398 560.283429 616.3306 584.1168 538.8993
5.4 691.66435 691.66492 663.558899 619.670149 695.0837 654.7044 598.8689
6.0 776.57623 776.57661 736.799208 675.989163 778.3961 728.8910 660.7993
Tables 3-4 and Figs 2(a-b) represent the and N = 5 vs the results in [26], the
numerical results of problem (2). The AEs results illustrate the efficiency and

of problem (2) at different values of N
and g =1,a = 0.5v(t) =1 in addition
to CPU time are given in Table 3. Also,
Table (4) shows the obtained numerical
results of problem (2) at @ = 0.5,v(t) =1

Problem (3):
Consider the following VO-DDEs [29],

DIy =yt - -y +F@®, 0<v® =1,

y(t) =t* —1t,
, __ Ein(t) _ @ 2—vie) riz)
where v(t) = 100 ° F(t) = ri3—vie)) r(z—vie)

y(t) =t* —t.

applicability of the proposed method. The
AEs graph between the ES and the AS is
offered in Fig. 2(a), while Fig. 2(b)
depicts the convention between the ES
and AS.

0=t=2

t € [-1,0],

Jtl—v{t} —(t—1)24+ 2t — T —t% and the ESis
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(b)

(a)
8.x1076 i
| = Exact solution
= * Approximate solution
6.x10™® 1.5 PP
= 4.x1078
w
2.x1076
0
0.0 0.5 1.0 15 20 0.0 0.5 1.0

t

t

1.5

2.0

Fig. (3): The numerical behavior of the proposed method on problem (3). (a) The AE graph at N=6 and a = 1, v(t)

Table (5): MAEs, CPU time and CO of problem (3) at p =1, a=-0.1, 1= 0.01 and different values of N.

= sin(t)/100,t = 0.1e ', (b) The graph of the ES and AS at ==0.1e ** on [0,2].

N MAEs CPU Time CcO
3 1.76461 x 107 0.358802
5 3.64761 x107° 13.1665 3.08607
7 5.25828 x 107 98.6082 5.75635
9 1.64111 x107° 658.527 4.63336

Table (6): The AEs of problem (3) at p =1, N =7, 1= 0.01 and different values of a.

a=-0.1

a=0

a=0.5

a=1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1.88975 x 107
3.50552 x 107°
8.62483 x 10°®
4.94488 x 10°°
1.41087 x 107°
488779 x 10°°
3.08363 x 107°

1.7228 x 10°°

3.7694 x 107°

2.02019 x 107%¢
2.98261 x 107°
214619 x 1077
4.22438 x 107°
1.25593 x 107°
4.10385 x 10°°
2.89317 x 107°
1.09256 x 107

45457 x 107°

1.70315 x 107*®
1.36591 x 107°
4.85245 x 1077
213783 x 107°
7.38224 x 1077
1.87043 x 107°
2.02525 x 107°

6.15745 x 1077

7.67698 x 107°

1.44288 x 107

5.7534 x 1077
4.99196 x 1077
1.21574 x 107®
4.63492 x 1077
9.32063 x 1077
1.38236 x 107°
1.14592 x 107°

9.832 x 107°
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Table (7): MAEs, CPU time and CO of problem (3) at p=1,a =

0, r = 0.1e *® and different valuesof N.

N MAEs CPU Time CcO
3 212789 x107* 2.52722 --
5 3.48173 x10°° 46.0671 26.0815
7 458242 x 107° 441576 6.02691
9 1.40205 x 10°° 2184.76 4.71239
Table (8): The AEs of problem (3) at pu = 1, N=11, 1=0.le *and different values of a.

t a=-0.1 a=0 a=0.5 a=1
0.00 1.01431 x 1076 7.27863 x 107V 3.66666 x 107 1.71188 x 107
0.25 3.39215 x 1077 2.45556 x 1077 6.41019 x 1078 1.06579 x 1078
0.50 4.91078 x 1077 3.7008 x 1077 151761 x 1077 5.93153 x 107®
0.75 400133 x1077 2.89424 x 1077 1.25605 x 1077 5.46979 x 107®
1.00 157252 x 1077 9.74798 x107® 6.01531 x 1078 3.3108 x107®
1.25 1.19054 x 1077 1.10341 x 1077 8.67002 x 107° 1.22976 x107®
1.50 2.59946 x 107”7 2.08732 x 1077 2.86773 x 1078 1.85032 x 1078
1.75 3.15788 x10°® 2.00816 x107® 1.2517 x 1077 1.29472 x 1077
2.00 3.6878 x 1077 5.20462 x 1077 1.05377 x107° 1.35213 x107®

The numerical solutions to problem (3) are
reported in Tables (5-8) and graphically
depicted in Figs. 3(a-b). We tabulated the
MAEs, CO, and CPU time at p = 1, 7 =
0.01, « = —-.10 in Table (5) using the
SFGOMs method at various values of N. Also,
Table 6 lists the AEs for various values of a.
Table (7) introduces the MAEs, CO, and CPU
time at p = 1, 7 = 0.1e ' « = 0 at distinct
values of N, . In addition, Table (8) presents
the AEs at N = 11, p = 1, « = 0.1e '* and
various values of a. Fig. 3(a) shows the AEs
between the ES and the AS at r = 0.1e

with N =6, u=1and a=1to demonstrate the
convergence of the suggested approach. The
agreement between the ES and AS at 7 =
0.1e '®is depicted in Fig. 3(b).
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VO -VDIDEs problems
Problem (4):
Consider the following VO-VDIDES,
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£
, 1 — gt
D:‘ﬂy(t} =vyl(t) + j viE—1)df+ " +F(t), 0=<v(t)=1, 0=t=1,
0
y(0)=1
vit) = ef, t <0,
(8) = cos(t), F(8) = T, — ¢
vit)=cos(t), Flt) =¥ oy0———7—¢ . at
Where Fik+i—vid)  andthe ESis © -
(a) (b)
12%10-8 — Exaci solution > 4
- 25} _ . . rd
6 Approximate solution J/
1.x10 P
8.x10~7 — 20 /{/"
& -7 = b

6.x10 S >
4.x10°7 1.5 /,/”/’/
2.x1077 P

0 10—

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

t

t

Fig. (4): The numerical behavior of the proposed method on problem (4) at N = 8 and a = 0.5, v(t)= cos(t), t=1.
(a) The AE graph of y(t). (b) The graph of the ES and AS on [0,1].

Table (9): MAEs, CPU time and CO of problem (4) at u =1, a=0.5, t = 1 and different values of N.

N MAEs CPU Time CcO
3 1.10307 x 10°° 1.71601
5 1.2496 x 107 20.3893 8.77099
7 2.80965 x 107° 114.77 4.43528
9 6.08145 x 107" 681.896 6.08959
Table 10: The AEs of problem (4) at p = 1, N =8, 7 =1 and distinct values of a.
t a=-0.1 a=0 a=0.5 a=1
0.0 3.33067 x 107 1.11022 x 107%¢ 4.44089 x 1076 2.22045 x 107
0.2 8.52819 x 1077 7.83197 x 1077 246773 x 1078 9.66403 x 107"
0.4 1.03639 x 10°° 8.29959 x 1077 3.49319 x 1077 1.55542 x 10°°
0.6 1.12992 x 10°° 8.91389 x 107" 4.89451 x 107 1.91286 x 10°°
0.8 1.50214 x 10°° 1.32508 x 10°° 1.09032 x 1077 1.83164 x 10°°
1.0 1.39161 x 10°° 1.21595 x 10°° 1.13308 x 107 1.03205 x 10°°
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Tables (9-10) and Fig. 4(a-b) show the 1, N = 8 are given in Table 10. Fig. 4(a)
numerical behavior of problem (4). In Table (9), depicts the AEs between the ES and the AS,
we tabulate the MAEs, CO and CPU time at u = whereas Fig. 4(b) depicts the ES and AS
1, o = 0.5 and distinct values of N. The AEs of harmony.
the problem (4) at distinct values of a, and p =

Problem (5):

Consider the following VO-VDIDES,

(4

D:"ﬂ}f(t} =y(t) + j y2(E —1)dE—etsinh(t) +F(t), 0<v() =1, 0=t=1,
o
y(t) =™, 1<,
iniE) gr—vit]
() =1-=2, F) = elip, ————et™! £+1
Where 100 Tik+1-v(e]) and the ES is ¢
(a) (b)
1.x1078 -
7 == Exact solution P4
8.x10~7 Approximate solution S 3
6 Ve
6.x10~7 N L
m4.,(10‘7 £° ’,"
4 o -7
2.x1077 _~
3 ,—"
0 -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

t t
Fig. (5): The numerical behavior of the proposed method for problem (5). (a) The AE graph at
N=8anda=0, V() =1—cos(t)/100 ;-1 () The graph of the ES and AS on [0, 1].

Table (11): MAEs, CPU time and CO of problem (5) at p = 1,a = 0.5,7 = 1 and different values of N.

N MAESs CPU Time co
3 2.32496 x 1072 137281 | -

5 1.3842 x10°° 13.6657 10.0303
7 2.38799 x10°° 90.6522 5.22259
9 8.21568 x 10~/ 557.844 4.24565
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Table (12): The AEs of problem (5) at p = 1,

Ahmed et al., 2022

N =9, ¢ =1 and distinct values of a.

t a=—0.1 a=0 a=0.5 a=1
0.0 4.44089 x 10716 8.88178 x 10716 1.77636 x 107 4.44089 x 10716
0.2 1.52152 x 1077 9.37497 x 1078 3.36799 x 1077 7.82135 x 1077
04 1.05787 x107° 7.8352 x 1077 2.50252 x 1077 9.49989 x 1077
0.6 2.05106 x 1077 5.34808 x 107° 7.04283 x 1077 1.35686 x 107°
0.8 1.21318 x107° 8.86686 x 1077 4.64468 x 1077 1.45694 x 107
1.0 1.04677 x107° 7.15273 x 1077 7.63273 x 1077 1.95594 x 107°

Tables (11-12) and Figs 5(a-b) show the
numerical behavior of problem (5). In Table
11, we tabulate the MAEs, CO and CPU time
at L =1, a = 0.5 and distinct values of N. The
AEs of the problem (5) at distinct values of a,

Conclusion

In this paper, a new numerical
mechanism has been extracted to find the
numerical solutions of the VO- DDEs and
VO-VDIDES, this mechanism has the ability
to convert the delay problems into non-delay
problem by using the method of steps. After,
the resulting non-delay equation s
approximated by the SFGOM of the VO
Caputo derivative in conjunction with the
collocation method. By applying this
mechanism the aforementioned problems are
converted into systems of algebraic equations
that have been solved easily using any
iteration method. The error analysis of the
proposed mechanism was also looked at.
Some numerical problems were introduced to
illustrate the applicability, accuracy, and
efficiency by using a few terms of the SFGPs.
From these numerical problems, we have
concluded that the SFGPs are easy to
compute and use, besides they have rapid
convergence. Also, the numerical results
demonstrated that the method is effective for
every choice of the Gegenbauer parameter a.
Besides, the numerical comparisons with
other methods in the existing literature
clarified the efficiency of the proposed
method.

and u=1, N =8aregivenin Table 12. Fig.
5(a) depicts the AEs between the ES and the
AS, whereas Fig. 5(b) depicts the ES and AS
agreement.
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