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The current paper offers an effective numerical mechanism for 

solving two models of variable order (VO) linear/nonlinear delay 

differential equations; the models represent the variable order delay 

differential equations (VODDEs) and the variable order Volterra delay 

integro-differential equations (VO-VDIDES) with initial functions. In 

the proposed mechanism, the method of steps is used to transfer the VO 

delay models (VO-DMs) into variable order non delay ones with initial 

conditions. After a novel operational matrix (OM) of VO derivative of 

the shifted fractional Gegenbauer polynomials (SFGPs) injunction with 

the spectral collocation method are utilized to transfer the 

aforementioned problem into a system of algebraic equations, which is 

simple to solve. The error estimation of the proposed technique is 

established through the article. The efficiency and accuracy of the 

proposed technique are verified by applying it to several numerical 

delay differential equations with constant or variable delay. The 

obtained numerical results are compared with other published data in 

the existing literature to expose the accuracy and efficiency of the 

proposed technique. 
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Introduction 

Recently, fractional calculus has 

received a lot of interest of many researchers; 

it allows us to analyze integration and 

differentiation of any order that isn’t 

necessarily an integer. The fractional operator 

can better describe a variety of real-world 

phenomena than the integer order calculus [19, 

1, 20]. The most familiar types of the fractional 

integrals and derivatives are the constant-order 

(CO) and VO. According to many researchers 

in recent years, many orders of differential 

equations that describe natural phenomena 

with fractional order can alter across time and 

space [11]. The VO models have gotten a lot of 

attentions, due to their appropriateness in 

simulating a wide range of phenomena across 

various sectors of science and engineering, 

such as anomalous diffusion [32], viscoelastic 

mechanics [13], control systems [21], 

petroleum engineering [27], and many other 

branches of physics and engineering [33, 14]. 

In 2016, Almeida et al. [1] looked into the 

topic of the population expansion problem by 

utilizing a fractional differential equation with 

a constant fractional-order to explain the 

dynamics. They expanded on previous research 

in 2018 [2] by considering the order as a 

function of time. In comparison to the constant 

order model, their research showed that the VO 

model is far more effective at estimating global 

population rise. Delay differential equation 

(DDE) is differed from the ordinary 

differential equation in that the derivative at 

every time is reliant on the solution at previous 

times. The DDE is also called a difference-

differential equation or functional differential 

equation or an equation with a time lag or a 

differential equation with deviating arguments. 

Distinct forms of DDEs are existed, each with 

a different sort of delay, such as time-

dependent delay, neutral delay, constant delay, 

state-dependent delay, stochastic delay, and so 

forth. DDEs are used in a variety of fields, 

including biology, electrical networks, and 

population dynamics; get back to [30, 10] and 

their references. Fractional delay models 

(FDMs) are gaining popularity as a new branch 

of nonlinear analysis. They provide a more 

natural foundation for modeling 

mathematically many real-world phenomena. 

They have a variety of applications, like 

electrodynamics, astrophysics, nonlinear 

dynamical systems, probability theory on 

algebraic structure [24]. In this area, 

tremendous progress has been made, with the 

majority of these publications devoted to the 

study of FDMs. On the other hand, classical 

calculus, cannot always provide the most 

accurate representation of some complicated 

events, such as those observed in biological 

systems and medicine, so VO-DDEs have 

arisen. It is known that the exact solution (ES)  

for such models is not available, so the main 

objective of this research article is to present 

and develop an accurate and effective 

numerical technique to solve some VO-DDEs. 

There are few works that appeared in this 

direction like; Abdelkawy [3] proposed the 

shifted fractional Jacobi collocation method for 

solving VO-DDEs; Dehghan [15] proposed 

numerical approach for solving a class of VO 

fractional functional boundary value problems 

(BVPs); Yang et al [31] proposed an algorithm 

depended on the reproducing kernel splines 

method for solving VO-DDEs; Li et al., [23] 

solved the VO-DDEs using Reproducing 

kernel method; Bhrawy and Zaky [12] used 

Chebyshev operational matrix to solve delay 

Dirichlet boundary value problem with a type 

of VO Caputo fractional derivative; Li and Wu. 

[22] presented numerical method for solving 

VO functional BVPs.  

The primary goal of this research is to extract an accurate numerical method to solve the following 

models: 

 VO-DDEs 

 
With the initial function (IF) 
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Where  and  are given functions which may be linear/nonlinear 

functions,  is the delay which may be constant or variable,  denotes the VO Caputo 

derivative and  is unknown function. 

 VO-VDIDES 

 
With the IF 

 

 

Where  and  are linear/non-linear functions, is the delay which 

may be constant or variable, denotes the VO Caputo derivative and  is unknown function. 

Spectral techniques are one of the most 

effective and powerful numerical algorithms 

for solving differential and integral equations 

with integer and non-integer order derivatives. 

Spectral approaches such as pseudo spectral 

[4], Galerkin [5], and Tau [17] can be 

produced from a weighted residual method. 

The spectral collocation method is becoming 

more widely used, with applications in a 

variety of fields. It is characterized by 

exponential rates of convergence, great 

precision, ease of use, and effectiveness in 

handling a variety of problems. Besides the 

spectral methods, operational matrices are 

commonly utilized for solving these types of 

equations [17, 5]. The current paper is based 

on the shifted fractional Gegenbauer 

polynomials for building the variable-order 

operational matrix of derivatives. Our choice 

of SFGPs gets back to several characteristics 

of these polynomials: 

 For a small set of spectral expansion terms, 

they attain quick convergence rates. 

 The Gegenbauer polynomials (GPs) have 

been proven to be particularly efficient in 

solving a variety of problems in numerous 

research [17, 6, 18, 7, 16]. 

 SFGPs are determined by two parameters  

and  For the first parameter . 

Each change of this parameter creates a 

new polynomial like the first kind of 

shifted fractional Chebyshev polynomials 

(SFCPs) with the parameter  the 

second kind of SFCPs with the 

parameter  and the shifted fractional 

Legendre polynomials (SFLPs) with the 

parameter  The second parameter 

 plays an important role in dealing 

with the problems which have singular or 

non-smooth solutions by suitably chosen of 

its value. 

 The SFGPs’ OM techniques have been 

proven effectiveness in solving many 

problems. Ahmed and Melad [8] derived a 

new SFGOM of differentiation and 

integration in conjunction with the spectral 

collocation method to solve VO 

pantograph-delay differential equations and 

VO pantograph Volterra delay integro-

differential equations, El-Gindy et al., [19] 

used different kinds of SFGOMs of the VO 

differentiation and integration to solve the 

VO Fredholm–Volterra integro-differential 

equations, systems of VO-FV-IDEs and 

VO Volterra partial integro-differential 

equations, Ahmed and Melad [9] extracted 

a novel numerical strategy that depends on 

SFGPs to solve nonlinear singular Emden-

Fowler VO-DMs, EL-Kalaawy et al. [18] 

proposed SFGOM of integration to 

numerically find the solution of fractional 

variation problems and fractional optimal 

control problems. 

In this paper, the method of steps is used to 

convert the VO-DMs (1.1), (1.2) , (1.3) and 

(1.4) into non delay ones. After, A new 

shifted fractional Gegenbauer operational 

matrix (SFGOM) of Caputo VO derivatives 
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in conjunction with the spectral collocation 

method is used to handle the resulting 

equations. As a result, systems of algebraic 

equations are obtained, these systems are 

easily solved using an iterative process.  

This paper is arranged as follows. In 

Section 2, we present some preliminaries of 

VO calculus and SFGPs. In Section 3, the 

SFGOM of the VO derivative is derived 

and the procedure solution of the present 

technique is introduced. In Section 4, some 

illustrative problems are offered. Section 5 

ends the paper with a conclusion.

Preliminaries and Definitions: 

 Caputo variable order derivative 

For physical modeling Combira [13] derived the following VO Caputo differential operator 

 

where  is a continuous differentiable function,  be a positive continuous bounded and 

 is the first integer derivative , and  are the right-hand and left-hand limits of 

 at  respectively. If the beginning time is considered in the ideal situation, then definition (2.1) 

is reduced to  

 

From definition (2.2), the following formula is established 

 

where  

 Mathematical preliminaries of Gegenbauer polynomials 

 Gegenbauer polynomials 

The GPs  of degree  and defined with the parameter  are a sequence of real 

polynomials in the finite domain  They are a family of orthogonal polynomials which has many 

applications [17]. 

 A suitable standardization of the GPs  dates back to Doha [16], where the GPs can be 

represented by 

 

or equivalently 

 

           where   are the Jacobi polynomials (JPs) of degree j. 

 The GPs’ analytical version is provided by, 
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 The following handy recurrence equation can be used to create the GPs 

 

 The orthogonality relation is satisfied by the GPs 

 

 denotes the weight function, it is an even function that is determined by the relation 

 
and 

 

            is the normalization factor and  represents the Kronecker delta function. 

 Now, we construct the fractional Gegenbauer–Gauss quadrature rule, for any 

 

 

where  are the corresponding Christoffel numbers defined by 

 

where  getting from the relation (2.6). 

 

 Shifted fractional Gegenbauer polynomials 

 The explicit analytic form of the SFGPs is given as 

 

 

 For  the SFGPS reduced to the shifted GPs in the interval  

 The orthogonal relation of SFGPs is 

 

where  is the weight function, and  

 

  is the normalization factor and  represents the Kronecker delta function. 

 The SFGPs comprise unlimited number of orthogonal polynomials, among them the shifted 

fractional order CPs of the first kind  the shifted fractional order CPs of the 
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second kind  and the shifted fractional order LPs 

 

 We denote the zeros of the SFGPs  by  

 

where  are the zeros of  By using the regular Gegenbauer–Gauss quadra- 

ture, the fractional Gegenbauer-Gauss quadrature rule can be established, for any 

 we have 

 
 

 

 

where  are the Christoffel numbers of the SFGPs that are given by 

 

where are defined by (2.7). 

 The square integrable function  can be approximated by SFGPs as 

 

       where the coefficients  are determined by 

 

        If we approximat e by the first (N+1)-terms, then we can write 

 

         The approximation of function  can be written in the vector form as 

                 

          Where  is the shifted Gegenbauer coefficient vector, and 

   

         is the SFG vector. 
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Error estimation 

Let  and  be an arbitrary element in  

Sinc e  is a finite dimensional vector space,  has the unique best approximation out of  

like , such that 

 

where  

Theorem 2.1 

Suppose that the function  for    is the best 

approximation to  from  then the error bound is presented as follow  

           

where            

Proof                   

We consider the generalized Taylor formula [26] 

 

with  Let  

 

Then,  

 

Because of  is the best square approximation function of , we can gain 
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where  are the Christoffel numbers of the SFGPs which are given by  (2.10). By applying the 

square roots, the proof is completed. 

The Methodology 

 Shifted Fractional Gegenbauer Operational Matrix (SFGOM) 

In this subsection, we will deduced the OM of the VO fractional derivative for the SFG vector  

where   

From relation (2.8) by using VO Caputo fractional derivative, we can write 

 

 

The function  can be written as a series of N + 1 terms of SFG polynomials, 

 
where 

 

 

 

By using (3.4) and (3.5) into (3.3), we have 
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Now, by employing (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6) we obtain: 

 

 

where  is given by 

 
where 

 

 

where  is the Christoffel numbers which is determined by (2.10).  

So, in a vector form, the VO fractional derivative SFGP is written as 

 

where  and  is called the OM of fractional derivative of order  in the Caputo sense. 

Procedure solution of the proposed Technique 

 VO-DDEs with initial function 

To solve the VO-DDEs, a numerical strategy 

based on the method of steps in addition to the 

SFGOMs combined with the spectral 

collocation approach will be used. Firstly, for 

 the VO-DDEs (1.1) and (1.2) are 

converted to VO non-delay differential 

equation by applying the method of steps, as 

 

with the IC, 

 

Now in order to solve (3.10) and (3.11) by using the OM of SFGPs, we approximate  in 

terms of SFGPs as follows 
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By using the VO-OM (3.9), 

 

By substituting from (3.12), (3.13) and (3.14) into (3.10) and (3.11) we get 

 
with the IC, 

 

By collocating (3.15) and (3.16) at the   nodes, the following collocating scheme is obtained 

 
with the IC,  

 
So system of (N+1) algebraic equations with 

the necessary SFG coefficients 

 is attained, which can be 

solved using an appropriate iterative process. 

As a result, the approximate solution  

can be determined over the interval  

After, by assuming that  and 

applying the same strategy the solution over 

the interval  is obtained, and so on by 

repeating the process, the solutions over the 

other intervals  until we pass 

the time  are computed. 

     VO-VDIDES with initial function 

In order to solve the VO-VDIDES for   the VO-VDIDES (1.3) and (1.4) are converted to VO 

Volterra non-delay integro-differential equation by applying the method of steps, as 

 
 

with the IC, 

 

Now in order to solve (3.19) and (3.20) by using the OM of SFGPs, we approximate  in 

terms of SFGPs as follows 

 

 
By using the VO-OM (3.9), Eq. (3.22) can be written as 

 
Substitute from (3.21), (3.2) and (3.23) into (3.19) and (3.20), gives 

 
with the IC 
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This results system of (N+1) algebraic equations with the necessary SFG coefficients 

 which can be solved using any iterative process. As a result, the estimated solution 

 can be computed over the interval  After, by assuming that  and applying the 

same scheme the solution over the interval  is obtained, and so on by using the same procedure, 

the solutions over the other intervals  until we pass the time  are computed. 

 Results and discussion 

We’ll go over five problems in this section to check the applicability and efficiency of the proposed 

approach. The software was created in Mathematica version 12 using a Dell laptop with an Intel(R) 

Core(TM) i3 CPU M 370@ 2.40 GHz and 3.00GB RAM configuration. The outcomes of our method 

are compared to those of other published numerical methodologies in the literature. The results 

evaluated in this article are calculated via 

 The absolute errors (AEs) computed by the relation 

 

Where  and  represent the ES and the approximate solution (AS), respectively. 

 The maximum absolute errors (MAEs) computed by the relation 

 

 Convergence order (CO) 

 
where error(N) is the error associated with a polynomial of degree N. 

 The computational time (CPU time) with seconds. 

 VO-DDEs problems 

Problem (1): 

Consider the following VO-DDEs, 

 

 

where  

 
and the ES is  
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(a) (b) 
 

Fig. (1): The numerical results of the proposed technique for problem (1) at N=7, and 

. (a) The AEs graph of y(t). (b) The graph of ES and AS in [0,1] 

 

 

Table (1): The AEs of problem (1) at  and different values of N. 
 

t ∈[0,0.5] 

t N = 3 N = 5 N = 7 N = 9 

0.0 1.0842 × 10−19 

6.43967 × 10−4 

6.18936 × 10−4 

4.26738 × 10−4 

4.8735 × 10−4 

6.28599 × 10−4 

5.96311 × 10−19 

1.91959 × 10−4 

1.47958 × 10−4 

1.29684 × 10−4 

9.92666 × 10−5 

1.15972 × 10−4 

2.43945 × 10−19 

1.38223 × 10−5 

1.1665 × 10−5 

9.50311 × 10−6 

7.85919 × 10−6 

7.58464 × 10−6 

8.80914 × 10−20 

1.21526 × 10−7 

1.02796 × 10−7 

8.58482 × 10−8 

7.14791 × 10−8 

6.47324 × 10−8 

0.1 

0.2 

0.3 

0.4 

0.5 

CPU Time 0.390003 11.9653 84.5837 478.892 

t∈(0.5,1] 

t N = 3 N = 5 N = 7 N = 9 

0.6 9.00422 × 10−2 

5.54744 × 10−2 

2.12647 × 10−2 

4.62955 × 10−2 

4.68614 × 10−2 

3.74286 × 10−3 

1.98243 × 10−3 

1.83176 × 10−3 

1.10873 × 10−3 

1.73337 × 10−3 

2.99503 × 10−4 

3.61941 × 10−4 

3.78847 × 10−4 

3.88693 × 10−4 

3.90701 × 10−4 

2.96231 × 10−4 

3.54816 × 10−4 

3.78014 × 10−4 

3.87305 × 10−4 

3.89935 × 10−4 

0.7 

0.8 

0.9 

1.0 

CPU Time 0.374402 10.7329 88.1094 1159.03 
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Table (2): The AEs of problem (1) at and different values of . 

t ∈[0,0.5] 

t α = −0.1 α = 0 α = 0.5 α = 1 

0.0 1.49078 × 10−19 

1.05739 × 10−5 

9.12765 × 10−6 

7.32909 × 10−6 

6.13383 × 10−6 

5.78045 × 10−6 

6.77626 × 10−20 

1.11304 × 10−5 

9.55903 × 10−6 

7.70015 × 10−6 

6.42682 × 10−6 

6.08383 × 10−6 

2.43945 × 10−19 

1.38223 × 10−5 

1.1665 × 10−5 

9.50311 × 10−6 

7.85919 × 10−6 

7.58464 × 10−6 

2.81893 × 10−18 

8.72698 × 10−4 

5.54573 × 10−4 

3.51214 × 10−4 

3.49391 × 10−4 

4.55005 × 10−4 

0.1 

0.2 

0.3 

0.4 

0.5 

t∈(0.5,1] 

t α = −0.1 α = 0 α = 0.5 α = 1 

0.6 2.78292 × 10−4 

3.5277 × 10−4 

3.68984 × 10−4 

3.85244 × 10−4 

3.85626 × 10−4 

2.83073 × 10−4 

3.54745 × 10−4 

3.71341 × 10−4 

3.85908 × 10−4 

3.86796 × 10−4 

2.99503 × 10−4 

3.61941 × 10−4 

3.78847 × 10−4 

3.88693 × 10−4 

3.90701 × 10−4 

2.78292 × 10−4 

3.5277 × 10−4 

3.68984 × 10−4 

3.85244 × 10−4 

3.85626 × 10−4 

0.7 

0.8 

0.9 

1.0 

 

Tables 1 and 2 list the numerical results of 

problem (1), which are graphically depicted in 

Figs. 1(a-b). In Table 1, we tabulated CPU time 

at    

and calculated the AEs at different values of N 

using the SFGPs.  The numerical results 

illustrate the efficiency of the proposed method. 

Table 2 also shows the AEs for different α 

values. In Fig. 1(a), We plot the AEs between 

the ES and the AS at  

and  to demonstrate the convergence of 

the suggested approach. The harmony between 

the ES and AS is depicted in Fig. 1(b). 

Problem (2): Houseflies model 

Consider the following VO-DDEs, 

 

 

 For  and  the ES [26] is 
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Fig. (2): The numerical results of the proposed technique for problem (2) at N=7, and  

 

Table (3): The AEs of problem (2) at  and distinct values of N. 

 t∈  [0, 3] 

t N = 5 N = 7 N = 9 

0.0 2.84217 × 10−16 

1.104 × 10−4 

1.25377 × 10−4 

1.4525 × 10−4 

1.59673 × 10−4 

1.79408 × 10−4 

0 

2.8386015 × 10−5 

5.4347272 × 10−5 

7.8116295 × 10−5 

9.9879271 × 10−5 

1.1980559 × 10−4 

5.68434 × 10−14 

2.84081 × 10−5 

5.43676 × 10−5 

7.81377 × 10−5 

9.98924 × 10−5 

1.19819 × 10−4 

0.6 

1.2 

1.8 

2.4 

3.0 

CPU Time 7.61285 75.5981 499.827 

t ∈  (3, 6] 

t N = 5 N = 7 N = 9 

3.6 1.65604 × 10−2 

1.44811 × 10−2 

1.35702 × 10−2 

1.21369 × 10−2 

1.18317 × 10−2 

2.9999411 × 10−3 

2.7245224 × 10−3 

2.4710056 × 10−3 

2.2371433 × 10−3 

2.0194911 × 10−3 

8.07861 × 10−4 

6.67153 × 10−4 

5.70991 × 10−4 

5.68967 × 10−4 

3.85297 × 10−4 

4.2 

4.8 

5.4 

6.0 

CPU Time 7.78445 89.607 535.817 
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Table (4): Numerical comparison of the numerical results of problem (2) with Ref.  [26] at 

 and N = 5 
 

t ∈  [0, 3] 

t Exact 

ν(t) = 1 

Present method Ref. [26] 

ν(t) = 1 ν(t) = 0.9 ν(t) = 0.75 ν(t) = 1 ν(t) = 0.9 ν(t) = 0.75 

0.0 

0.6 

1.2 

1.8 

2.4 

3.0 

160 

220.54544 

275.97949 

326.73368 

373.20309 

415.74944 

160 

220.54541 

275.97944 

326.73360 

373.20299 

415.74932 

160 

222.677243 

274.683694 

319.732418 

359.663813 

395.371548 

160 

226.348405 

272.657319 

309.247175 

340.152297 

366.723465 

160 

220.5461 

275.9811 

326.7352 

373.2043 

415.7506 

160 

228.2375 

281.6995 

326.0291 

364.9633 

400.3329 

160 

241.5848 

289.7538 

322.5902 

350.5524 

376.4743 

t ∈  (3, 6] 

t Exact 

ν(t) = 1 

Present method Ref. [26] 

ν(t) = 1 ν(t) = 0.9 ν(t) = 0.75 ν(t) = 1 ν(t) = 0.9 ν(t) = 0.75 

3.6 

4.2 

4.8 

5.4 

6.0 

466.46112 

532.81911 

609.31444 

691.66435 

776.57623 

466.46193 

532.81977 

609.31501 

691.66492 

776.57661 

452.175703 

518.642805 

590.141398 

663.558899 

736.799208 

433.517535 

498.134288 

560.283429 

619.670149 

675.989163 

476.1586 

543.1325 

616.3306 

695.0837 

778.3961 

456.7157 

517.9783 

584.1168 

654.7044 

728.8910 

427.6485 

481.7216 

538.8993 

598.8689 

660.7993 

 
Tables 3-4 and Figs 2(a-b) represent the 

numerical results of problem (2). The AEs 

of problem (2) at different values of N 

and in addition 

to CPU time are given in Table 3. Also, 

Table (4) shows the obtained numerical 

results of problem (2) at 1 

and N = 5 vs the results in [26], the 

results illustrate the efficiency and 

applicability of the proposed method. The 

AEs graph between the ES and the AS is 

offered in Fig. 2(a), while Fig. 2(b) 

depicts the convention between the ES 

and AS. 

 

Problem (3): 

Consider the following VO-DDEs [29], 

 

 

where  and the ES is 
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(a) (b) 

Fig. (3): The numerical behavior of the proposed method on problem (3). (a) The AE graph at N=6 and α = 1, ν(t)  

= sin(t)/100,τ  = 0.1e
−10t

. (b) The graph of the ES and AS at τ=0.1e
−10t

 on [0,2]. 

Table (5): MAEs, CPU time and CO of problem (3) at µ = 1, α = −0.1, τ = 0.01 and different values of N. 

 

N MAEs CPU Time CO 

3 

5 

7 

9 

1.76461 × 10−4 

3.64761 × 10−5 

5.25828 × 10−6 

1.64111 × 10−6 

0.358802 

13.1665 

98.6082 

658.527 

--- 

3.08607 

5.75635 

4.63336 

 

Table (6): The AEs of problem (3) at µ = 1, N = 7, τ = 0.01 and different values of α. 

 

t α = −0.1 α = 0 α = 0.5 α = 1 

0.00 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

2.00 

1.88975 × 10−17 

3.50552 × 10−6 

8.62483 × 10−8 

4.94488 × 10−6 

1.41087 × 10−6 

4.88779 × 10−6 

3.08363 × 10−6 

1.7228 × 10−6 

3.7694 × 10−6 

2.02019 × 10−16 

2.98261 × 10−6 

2.14619 × 10−7 

4.22438 × 10−6 

1.25593 × 10−6 

4.10385 × 10−6 

2.89317 × 10−6 

1.09256 × 10−6 

4.5457 × 10−6 

1.70315 × 10−16 

1.36591 × 10−6 

4.85245 × 10−7 

2.13783 × 10−6 

7.38224 × 10−7 

1.87043 × 10−6 

2.02525 × 10−6 

6.15745 × 10−7 

7.67698 × 10−6 

1.44288 × 10−17 

5.7534 × 10−7 

4.99196 × 10−7 

1.21574 × 10−6 

4.63492 × 10−7 

9.32063 × 10−7 

1.38236 × 10−6 

1.14592 × 10−6 

9.832 × 10−6 
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Table (7): MAEs, CPU time and CO of problem (3) at µ = 1, α = 0, τ = 0.1e
−10t

 and different values of N. 

 

N MAEs CPU Time CO 

3 

5 

7 

9 

212789 × 10−4 

3.48173 × 10−5 

4.58242 × 10−6 

1.40205 × 10−6 

2.52722 

46.0671 

441.576 

2184.76 

-- 

26.0815 

6.02691 

4.71239 

 

 

Table (8): The AEs of problem (3) at µ = 1, N = 11, τ = 0.1e
−10t

 and different values of α. 

t α = −0.1 α = 0 α = 0.5 α = 1 

0.00 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

2.00 

1.01431 × 10−16 

3.39215 × 10−7 

4.91078 × 10−7 

4.00133 × 10−7 

1.57252 × 10−7 

1.19054 × 10−7 

2.59946 × 10−7 

3.15788 × 10−8 

3.6878 × 10−7 

7.27863 × 10−17 

2.45556 × 10−7 

3.7008 × 10−7 

2.89424 × 10−7 

9.74798 × 10−8 

1.10341 × 10−7 

2.08732 × 10−7 

2.00816 × 10−8 

5.20462 × 10−7 

3.66666 × 10−17 

6.41019 × 10−8 

1.51761 × 10−7 

1.25605 × 10−7 

6.01531 × 10−8 

8.67002 × 10−9 

2.86773 × 10−8 

1.2517 × 10−7 

1.05377 × 10−6 

1.71188 × 10−17 

1.06579 × 10−8 

5.93153 × 10−8 

5.46979 × 10−8 

3.3108 × 10−8 

1.22976 × 10−8 

1.85032 × 10−8 

1.29472 × 10−7 

1.35213 × 10−6 

 
The numerical solutions to problem (3) are 

reported in Tables (5-8) and graphically 

depicted in Figs. 3(a-b).  We tabulated the 

MAEs, CO, and CPU time at µ = 1, τ = 

0.01, α = −.10 in Table (5) using the 

SFGOMs method at various values of N. Also, 

Table 6 lists the AEs for various values of α. 

Table (7)  introduces the MAEs, CO, and CPU 

time at µ = 1, τ = 0.1e
−10t

, α = 0 at distinct 

values of N, µ. In addition, Table (8) presents 

the AEs at N = 11, µ = 1, τ = 0.1e
−10t

 and 

various values of α. Fig. 3(a) shows the  AEs 

between the  ES and the  AS at  τ  = 0.1e
−10t

  

with  N  = 6, µ = 1 and  α = 1 to  demonstrate the 

convergence of the suggested approach. The 

agreement between the ES and AS at τ = 

0.1e
−10t

 is depicted in Fig. 3(b). 
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VO -VDIDEs problems 

Problem (4): 

Consider the following VO-VDIDES, 

 

 

 

Where  and the ES is  

(a)  (b) 
 

Fig. (4): The numerical behavior of the proposed method on problem (4) at N = 8 and α = 0.5, ν(t)= cos(t), τ=1.       

(a) The AE graph of y(t). (b) The graph of the ES and AS on [0,1]. 

Table (9): MAEs, CPU time and CO of problem (4) at µ = 1, α = 0.5, τ = 1 and different values of N. 
 

N MAEs CPU Time CO 

3 

5 

7 

9 

1.10307 × 10−3 

1.2496 × 10−5 

2.80965 × 10−6 

6.08145 × 10−7 

1.71601 

20.3893 

114.77 

681.896 

---- 

8.77099 

4.43528 

6.08959 

 

Table 10: The AEs of problem (4) at µ = 1, N = 8, τ = 1 and distinct values of α. 
 

t α = −0.1 α = 0 α = 0.5 α = 1 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

3.33067 × 10−16 

8.52819 × 10−7 

1.03639 × 10−6 

1.12992 × 10−6 

1.50214 × 10−6 

1.39161 × 10−6 

1.11022 × 10−16 

7.83197 × 10−7 

8.29959 × 10−7 

8.91389 × 10−7 

1.32508 × 10−6 

1.21595 × 10−6 

4.44089 × 10−16 

2.46773 × 10−8 

3.49319 × 10−7 

4.89451 × 10−7 

1.09032 × 10−7 

1.13308 × 10−7 

2.22045 × 10−16 

9.66403 × 10−7 

1.55542 × 10−6 

1.91286 × 10−6 

1.83164 × 10−6 

1.03205 × 10−6 
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Tables (9-10) and Fig. 4(a-b) show the 

numerical behavior of problem (4). In Table (9), 

we tabulate the MAEs, CO and CPU time at µ = 

1, α = 0.5 and distinct values of N. The AEs of 

the problem (4) at distinct values of α, and µ = 

1,    N = 8 are given in Table 10.  Fig. 4(a) 

depicts the AEs between the ES and the AS, 

whereas Fig. 4(b) depicts the ES and AS 

harmony. 

Problem (5): 

Consider the following VO-VDIDES, 

 

 

Where  and the ES is  

(a) (b) 

 

Fig. (5): The numerical behavior of the proposed method for problem (5).  (a) The AE graph at 

N = 8 and α = 0, ,τ = 1. (b) The graph of the ES and AS on [0, 1]. 

 
 

Table (11): MAEs, CPU time and CO of problem (5) at µ = 1,α = 0.5,τ = 1 and different values of N. 

 

N MAEs CPU Time CO 

3 

5 

7 

9 

2.32496 × 10−3 

1.3842 × 10−5 

2.38799 × 10−6 

8.21568 × 10−7 

1.37281 

13.6657 

90.6522 

557.844 

----- 

10.0303 

5.22259 

4.24565 
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Table (12): The AEs of problem (5) at µ = 1, N = 9, τ = 1 and distinct values of α. 
 

t α = −0.1 α = 0 α = 0.5 α = 1 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

4.44089 × 10−16 

1.52152 × 10−7 

1.05787 × 10−6 

2.05106 × 10−7 

1.21318 × 10−6 

1.04677 × 10−6 

8.88178 × 10−16 

9.37497 × 10−8 

7.8352 × 10−7 

5.34808 × 10−8 

8.86686 × 10−7 

7.15273 × 10−7 

1.77636 × 10−15 

3.36799 × 10−7 

2.50252 × 10−7 

7.04283 × 10−7 

4.64468 × 10−7 

7.63273 × 10−7 

4.44089 × 10−16 

7.82135 × 10−7 

9.49989 × 10−7 

1.35686 × 10−6 

1.45694 × 10−6 

1.95594 × 10−6 

 

Tables (11-12) and Figs 5(a-b) show the 

numerical behavior of problem (5). In Table 

11, we tabulate the MAEs, CO and CPU time 

at µ = 1, α = 0.5 and distinct values of N. The 

AEs of the problem (5) at distinct values of α, 

and µ = 1,    N = 8 are given in Table 12.  Fig. 

5(a) depicts the AEs between the ES and the 

AS, whereas Fig. 5(b) depicts the ES and AS 

agreement. 

 
Conclusion 

In this paper, a new numerical 

mechanism has been extracted to find the 

numerical solutions of the VO- DDEs and 

VO-VDIDES, this mechanism has the ability 

to convert the delay problems into non-delay 

problem by using the method of steps. After, 

the resulting non-delay equation is 

approximated by the SFGOM of the VO 

Caputo derivative in conjunction with the 

collocation method. By applying this 

mechanism the aforementioned problems are 

converted into systems of algebraic equations 

that have been solved easily using any 

iteration method. The error analysis of the 

proposed mechanism was also looked at. 

Some numerical problems were introduced to 

illustrate the applicability, accuracy, and 

efficiency by using a few terms of the SFGPs. 

From these numerical problems, we have 

concluded that the SFGPs are easy to 

compute and use, besides they have rapid 

convergence. Also, the numerical results 

demonstrated that the method is effective for 

every choice of the Gegenbauer parameter α. 

Besides, the numerical comparisons with 

other methods in the existing literature 

clarified the efficiency of the proposed 

method. 
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 ةالمتغير التأخيرية ذات الرتبة التفاضليةمعادلات الآلية عددية جديدة لحل نموذجين من 

هدى فرغل أحمد
1

، أيمن محمد محمود
2

و مارينا بنيامين ميلاد 
2 

 مصر -جامعة المنيا -كلية العلوم-قسم الرياضيات 1

 مصر -جامعة الوادى الجديد -كلية العلوم -قسم الرياضيات 2

/ غير  ةخطيال يةتأخيرالتفاضلية المعادلات المن  مختلفين آلية عددية فعالة لحل نموذجين ليالحابحث قدم الي

ية ذات رتبة متغيرة و معادلات تفاضلية ؛ تمثل النماذج معادلات تفاضلية تأخيرة ذات الرتبة المتغيرةخطيال

ترحة ، يتم استخدام طريقة في الآلية المق . تكاملية تأخيرية لفولتيرا ذات رتبة متغيرة مع شروط دالية

مع شروط  رتبة متغيرةذات  يةإلى نماذج غير تأخير ية ذات الرتبة المتغيرةتأخيرالنماذج ال تحويلالخطوات ل

تفاضلية جديدة ذات رتبة متغيرة لكثيرة حدود جيجينباور  بعد ذلك، يتم استخدام مصفوفة  تشغيلية .أولية

تجميع الطيفية لتحويل النماذج قيد الدراسة الى نظام من المعادلات الكسرية الملحقة بالتزامن مع طريقة ال

 ليةيتم التحقق من كفاءة ودقة الا .قمنا أيضا بدراسة تقدير الخطأ للالية المقترحة .الجبرية التى يسهل حلها

تتم  .غيربتأخير ثابت أو مت سواء العديد من المعادلات التفاضلية التأخيريةالمقترحة من خلال تطبيقها على 

المنشورة في الأدبيات الأخرى  لنتائجمع ا من الالية المقترحة مقارنة النتائج العددية التي تم الحصول عليها

 .المقترحة ليةدقة وكفاءة الا توضيح ل

 


