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The present work offers a new model of (n+1)-dimensional fractional 

Burgers’ equation ((n+1)D-FBE) and presents a comparative numerical 

study of three efficient semi analytical techniques for solving the ((n+1)D-

FBEs). These techniques include the Laplace Adomian decomposition 

method (LADM), the Laplace variational iteration method (LVIM) and 

the reduced differential transform method (RDTM). The suggested 

approaches consider the use of the suitable initial conditions and find the 

solutions without any discretization  or limiting traditions. Furthermore, 

their solutions are in the form of quickly convergent series with easily 

calculable terms. Numerical studies of four numerical applications are 

provided to certify the effectiveness and reliability of the suggested 

approaches, also to compare their computational effectiveness with each 

other and with other supplementary methods in the available literature. In 

addition to explore the properties of the solutions when changing the 

fractional derivative parameter. Numerical results demonstrate the 

effectiveness and accuracy of the suggested methods. 

 

© Faculty of Science, Tanta University. 

   

 

mailto:msmbahgat66@hotmail.com
Num 1
Rectangle



102 
DJS Vol. 44 (2) (2022) – pp.101-123 ISSN: 1012-5965 

Introduction 
 

The Burgers’ equation is one of the 

most well-known equations containing both 

non-linear propagation effects and diffusive 

effects. Burgers’ equation, being a nonlinear 

PDE, stand for a diverse physical issue 

resulting in engineering, which are basically 

hard to solve. Lately, a growing attract has 

been devised within the scientific society, for 

studying non-linear convective–diffusion 

partial differential equations partly due to the 

tremendous advancement in computational 

capacity (e.g. Srivastava et al., 2022; 

Alqhtani  et al., 2022). Burgers’ equation is 

suitable for the analysis of various 

significant. It can be seen that Burgers’ 

equation is a basic model of fluid dynamics 

and is used as a computational device for 

dealing with more complex phenomena. It 

may be used to model the airflow around a 

wing of the aircraft (Das, 1994), acoustic 

transmission (Moslem et al., 2008), heat 

conduction (Rashidi and Erfani, 2009), 

fluid flow in a pipe (Dutta et al., 2016), etc. 

Due to the wide range of uses of Burgers’ 

equation, it is widely studied and various 

numerical techniques are available. Most of 

these algorithms belong either to the finite 

element technique or to the finite difference 

technique and the spectral technique (e.g. 

Khater et al., 2008; INAN and BAHADIR, 

2013; Doha et al., 2013; Bhrawy et al., 

2015; Yokus, 2018; Ahmed et al., 2020). J. 

M. Burgers (1895-1981) (e.g. Bateman, 

1915; Burgers, 1948; Lax, 1973; Garra, 

2011) stated the mathematical structure of 

Burgers’ equation. The most recent progress 

has been assumed in the field of fractional 

differential equations (FDEs) and fractional 

calculus (FC). Nanotechnology, 

electromagnetic waves, ion-acoustic waves, 

bio-informatics, electrode-electrolyte 

polarisation, viscoelasticity, chemical 

engineering, mechanical, heat conduction, 

diffusion, and almost all disciplines of study 

and technology make extensive use of FDEs 

(Garra, 2011; Jiang et al., 2012; Sabatier et 

al., 2007; Debnath, 2003). In comparison to 

traditional integer-order derivatives, 

fractional derivatives provide more realistic 

simulations of real-world issues. Also, it is 

the same purpose why many fractional 

models of the Burgers’ equation (Bhrawy et 

al., 2015; Yokus, 2018; Ahmed, 2020; Jiang 

et al., 2012; Momani, 2006; Inc, 2008; Saad 

and Al-Sharif, 2017; Yokus and Kaya, 

2017; Sripacharasakullert et al., 2019; 

Ahmed et al., 2019; Ahmed, 2019; Ahmed, 

2020; Kilicman, et al., 2021) have been 

suggested and studied lately. The fractional 

model is obtained by substituting fractional 

equivalents for the time/space integer 

derivatives and the initial / boundary 

conditions. The existence and uniqueness of 

generalised Burgers’ equations (GBEs) 

solutions governed by multi-parameter 

fractional derivatives are revealed in (Jiang 

et al., 2012). The non-perturbation analytical 

solutions of the fractional GBEs are obtained 

by the Adomian decomposition method 

(Momani, 2006). In (Inc, 2008; Saad and 

Al-Sharif, 2017), the variational iteration 

method is applied to gain the approximate and 

numerical solutions of the class of time and 

time- space- fractional Burgers’ equations. In 

(Yokus and Kaya, 2017), the expansion 

method and Cole-Hopf transformation are 

used to find the exact solution for the 

traveling wave equation of nonlinear time 
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fractional Burgers’ equation. An estimated 

analytical solution of fractional multi-

dimensional Burgers’ equation is attained by 

the homotopy perturbation method 

(Sripacharasakullert et al., 2019). In 

(Ahmed et al., 2019) the LVIM, LADM and 

RDTM are successfully applied for solving 

the one- and two-dimensional fractional 

coupled Burgers’  

equation. While in (Kilicman et al., 2021) 

the homotopy perturbation method is 

considered to solve the (1+n)-dimensional 

fractional M-Burger’s equation with a force 

term. Notably, there is a need to improve 

more efficacious analytical and numerical 

techniques to address changing models of 

FBE, especially in multidimensional spaces. 

The main goal of this paper is to spur the use 

of the LADM, LVIM, and RDTM to create 

semi-analytical approximate solutions of the 

(n+1) dimensional space time-fractional 

Burgers’ equation ((n+1)D-STFBEs) of the 

form:

       

 𝐷𝑡
𝛼𝑤 (𝑥

⇀
, 𝑡) + 𝜖  𝑤 (𝑥

⇀
, 𝑡)  ∑𝑛

𝑖=0 𝐷𝑥𝑖

𝛽
𝑤(𝑥𝑖 , 𝑡) − 𝜇 ∑𝑛

𝑖=0 𝐷𝑥𝑖

2𝛽
𝑤(𝑥𝑖 , 𝑡)   = 0.                               (1)   

With the initial condition,  

   𝑤 (𝑥
⇀

, 0) = 𝑓0 (𝑥
⇀

).                                                                                                                      (2) 

Where 0 < 𝑡 ≤ 𝑇, 𝑥
⇀

= (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), 0 <

𝛼, 𝛽 ≤ 1,𝐷𝑡
𝛼 , 𝐷𝑥𝑖

𝛽
, 𝐷𝑥𝑖

2𝛽
 are the Caputo 

fractional derivatives of orders    𝛼, 𝛽 and 2𝛽, 

respectively, 𝜇 is the viscosity coefficie,𝜖 is 

the coefficient of nonlinear convection term 

𝑤 (𝑥
⇀

, 𝑡)  ∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑤,𝐷𝑡

𝛼𝑤 (𝑥
⇀

, 𝑡)  is 

unsteady term, 𝑤 (𝑥
⇀

, 𝑡)  ∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑤(𝑥𝑖 , 𝑡) is 

the nonlinear convection term, 𝐷𝑥𝑖

2𝛽
𝑤(𝑥𝑖 , 𝑡) 

is the diffusion term.  In this article, we utilize 

LVIM, LADM and RDTM to the (n+1) D-

TSFBEs (1). The suggested methods are 

vigorous and effective in ruling suitable 

solutions for extensive forms of linear and 

nonlinear differential equations. They Also 

consider the use of the suitable initial 

conditions and find the solutions without any 

discretization perturbation, or any other 

restrictive assumptions that may change the 

physical behavior of the model under study. 

Furthermore, their solutions are in the form of 

quickly convergent series with easily 

calculable terms. The LADM is an ingenious 

combination of the Laplace transform and 

Adomain decomposition method (ADM) 

(Khuri, 2001; Wazwaz, 2010; Jafari et al., 

2013; Ahmed et al., 2017 ), and was 

introduced by (Khuri, 2001). The LVIM 

(Guo-Cheng and Dumitru Baleanu, 2013) 

is a new reform of the variational iteration 

method (VIM) which is excellently used to 

solve extensive classes of differential 

equations (Ahmed et al., 2019; Ahmed, 

2019; Ahmed, 2020; Ahmed et al., 2017; 

Guo-Cheng and Dumitru Baleanu, 2013). 

Zhhou, (1986) presented a simplified 

differential transformation that he used to 

nonlinear and linear initial value circuit 

problems. The Taylor series expansion 

influences RDTM, which is a semi-analytical 

approach. It differs from the widely used 

high-order Taylor’s series approach. The vital 

derivatives of the data functions must be 

symbolically scheming. An iterative 

technique is used by RDTM to obtain a 

polynomial series solution. RDTM (Ahmed 

et al., 2019; Zhhou, 1986; Sohail and 
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Mohyud-Din, 2012) was effectively used to 

produce analytical approximate solutions to 

many kinds of FDEs. In order to demonstrate 

the effectiveness of the proposed methods, 

four numerical applications are provided. 

Graphic illustrations of the proposed three 

techniques with the exact solutions are 

presented. To explain the efficacy and 

precision of the proposed methodologies, 

numerical comparisons with other published 

results in the current literature are provided. 

The outcomes show that the proposed 

procedures are very successful, rigorous, and 

straightforward. The contents of the present 

article are as follows: 
 

The section "Preliminaries and definitions" 

contains basic definitions and mathematical 

prefaces for fractional Caputo derivatives, 

which are necessary for constructing 

numerical solutions. The expounding of 

LVIM, LADM and RDTM on the (n+1) D-

STFBEs are exposed in "Methods" section. 

The numerical and graphical results of four 

different applications are described in 

"Results and discussion" section. We provide 

conclusions that conclude this paper in 

“Conclusion“ section.

  Preliminaries and Definitions 
 

Definition 1: Suppose that: α > 0,    𝑥 > 𝑎,    α,    a ∈ ℝ. Then the fractional operator  

𝐷𝑐
𝛼𝑤(𝑥) =

{

1

𝛤(𝑚−𝛼)
  ∫

𝑥

𝑎
(𝑥 − 𝜏)𝑚−𝛼−1   

𝑑𝑚

𝑑𝜏𝑚 𝑤(𝜏)  𝑑𝜏,      𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ ℕ, 𝑥 > 𝑎,    

𝑑𝑚

𝑑𝑥𝑚 𝑤(𝑥),                                                                  𝛼 = 𝑚, 𝑚 ∈ ℕ,    𝑥 > 𝑎,                       
                 (3) 

is known as the Caputo fractional derivative (CFD) operator (Miller and Ross, 1993; Li et al., 

2011) of order α.This operator is introduced by Italian mathematician Caputo in 1967. 
 

 

Definition 2: Suppose 𝑊(𝑠) is the Laplace transform of 𝑤(𝑥). Then the Laplace transform of the 

CFD (3) is defined as  

{𝐷𝐶
𝛼(𝑤(𝑥)); 𝑠} = 𝑠𝛼𝑊(𝑠) − ∑𝑚−1

𝑘=0 𝑠𝛼−𝑘−1𝑤(𝑘)(0),            𝑚 − 1 < 𝛼 < 𝑚.                              (4) 
 

Definition 3: The inverse differential transform of 𝑊𝑘(𝑥) is calculated as follows:  

          𝑤(𝑥, 𝑡) = ∑∞
𝑘=0 𝑊 𝑘

(𝑥)𝑡𝑘𝛼 .                                                                                                 (5) 

 

Definition 4:  The analytical and continuously differentiable function 𝑤(𝑥, 𝑡)  w.r.t. 𝑡, the t-

dimensional transformed function 𝑊𝑘(𝑥)   is provided by  

𝑊 𝑘
(𝑥) =

1

𝛤(𝑘𝛼+1)
[(𝐷𝑡

𝛼)𝑘𝑤(𝑥, 𝑡)]𝑡=0 ,                                                                               (6) 

where  0 < 𝛼 ≤ 1, (𝐷𝑡
𝛼)𝑘 = 𝐷𝑡

𝛼 . 𝐷𝑡
𝛼 . 𝐷𝑡

𝛼 . . 𝐷𝑡
𝛼, 𝑘-times and 𝐷𝑡

𝛼 is the fractional differential operator 

with respect to time of order 𝛼. 
 

An Study of The Semi-Analytical Methods 
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The Application Process of LADM to the (1+ n)D-STFBE 

Consider the (n+1)D- STFBE represented by Eq.(1). The procedure solution of using LADM for 

solving Eq.(1) is as follows: 

Step1: Implementing the Laplace transform of Eq.(1) and utilizing the initial conditions (2), we get  

£𝑡[𝑤(�⃑�, 𝑡)] =
1

𝑠
𝑓0(�⃑�) +

1

𝑠𝛼 £𝑡 [−𝜖𝑤(�⃑�, 𝑡)( ∑ 𝐷𝑥𝑖

𝛽
𝑤(𝑥𝑖 , 𝑡)𝑛

𝑖=0 ) + 𝜇 ∑ 𝐷𝑥𝑖

2𝛽
𝑤(𝑥𝑖 , 𝑡)𝑛

𝑖=0 ].               (7) 

Step2: LADM describes the solutions u(x, t) by the infinite series:  

 𝑤(�⃑�, 𝑡) = ∑ 𝑤𝑛(�⃑�, 𝑡)∞
𝑛=0 .                                                                                                                (8) 

The nonlinear parts 𝑤 (𝑥
⇀

, 𝑡)  ∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑤(𝑥𝑖 , 𝑡) in (7) are decomposed as:  

  (∑ ∑ 𝐷𝑥𝑖

𝛽
𝑤𝑛(𝑥𝑖  , 𝑡)𝑛

𝑖=0
∞
𝑛=0 ) ∑ 𝑤𝑛(�⃑�, 𝑡)∞

𝑛=0 = ∑ 𝐴𝑛
∞
𝑛=0 ,                                                                (9) 

where 𝐴𝑛 is the Adomian polynomials. The general formula for the Adomian polynomials is  

 𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛 [(∑∞
𝑘=0 𝜆𝑘 (∑𝑛

𝑖=0 𝐷𝑥𝑖

𝛽
𝑤 𝑘

(𝑥𝑖 , 𝑡))) ∑∞
𝑘=0 𝜆𝑘𝑤 𝑘 (𝑥

⇀
, 𝑡)].                                           (10) 

The first few components of 𝐴𝑛 are  

 𝐴0 = 𝑤 0 (𝑥
⇀

, 𝑡) (∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑤 0

(𝑥𝑖 , 𝑡)), 

𝐴1 = 𝑤 0 (𝑥
⇀

, 𝑡) (∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑤 1

(𝑥𝑖 , 𝑡)) + 𝑤 1 (𝑥
⇀

, 𝑡) (∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑤 0

(𝑥𝑖 , 𝑡)),                                   (11)   

𝐴2 = 𝑤 0 (𝑥
⇀

, 𝑡) (∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑤 2

(𝑥𝑖 , 𝑡)) + 𝑤 1 (𝑥
⇀

, 𝑡) (∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑤 1

(𝑥𝑖 , 𝑡))                       

         +  𝑤 2 (𝑥
⇀

, 𝑡) (∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑤 0

(𝑥𝑖 , 𝑡)) , …     

Step3: Following the decomposition analysis strategy, Eq. (7) is converted into a set of recursive 

equations given by  

£𝑡[𝑤0(�⃑�, 𝑡)] =
1

𝑠
(𝑓0(�⃑�)), 

£𝑡[𝑤1(�⃑�, 𝑡)] =
1

𝑠𝛼 £𝑡[−𝜖𝐴0 + 𝜇 ∑ 𝐷𝑥𝑖

2𝛽
𝑤0(𝑥𝑖 , 𝑡)𝑛

𝑖=0 ], ….. 

Then, 

£𝑡[𝑤𝑘+1(�⃑�, 𝑡)] =
1

𝑠𝛼 £𝑡[−𝜖𝐴𝑘 +  𝜇 ∑ 𝐷𝑥𝑖

2𝛽
𝑤𝑘(𝑥𝑖 , 𝑡)𝑛

𝑖=0 ].                                                             (12) 

Step4: Implementing the inverse Laplace transform, the components 𝑤 𝑘 , 𝑘 ≥ 1 are given as  

𝑤0(�⃑�, 𝑡) = £𝑡
−1 (

1

𝑠
(𝑓0(�⃑�))) = 𝑓0(�⃑�), 

𝑤1(�⃑�, 𝑡) = 𝑓1(�⃑�)
𝑡𝛼

𝛤(1𝛼+1)
,                                                                                                             (13) 

𝑤2(�⃑�, 𝑡) = 𝑓2(�⃑�)
𝑡2𝛼

𝛤(2𝛼+1)
  ,….. 

So the 𝑁 Approximate solution is presented by:  
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𝜙 𝑁 (𝑥
⇀

, 𝑡) = ∑𝑁
𝑖=0 𝑤𝑖 (𝑥

⇀
, 𝑡) = ∑𝑁

𝑖=0 𝑓𝑖 (𝑥
⇀

)
𝑡𝑖𝛼

𝛤(𝑖𝛼+1)
                                                                      (14) 

Where  

𝑓0 (𝑥
⇀

) = 𝑤 (𝑥
⇀

, 0)  

𝑓1 (𝑥
⇀

) = −𝜖  𝑓0 (𝑥
⇀

)  (∑𝑛
𝑖=0 𝐷𝑥𝑖

𝛽
𝑓0(𝑥𝑖  )) + 𝜇 (∑𝑛

𝑖=0 𝐷𝑥𝑖

2𝛽
𝑓0(𝑥𝑖  )),                                             (15) 

𝑓2 (𝑥
⇀

) = −𝜖  𝑓0 (𝑥
⇀

) (∑

𝑛

𝑖=0

𝐷𝑥𝑖

𝛽
𝑓1(𝑥𝑖  )) − 𝜖  𝑓1(𝑥) (∑

𝑛

𝑖=0

𝐷𝑥𝑖

𝛽
𝑓0(𝑥𝑖  )) + 𝜇 (∑

𝑛

𝑖=0

𝐷𝑥𝑖

2𝛽
𝑓1(𝑥𝑖  )). 

And the exact solution will be 

lim𝑁→∞𝜙 𝑁  (𝑥
⇀

, 𝑡) . 

In some cases the exact solution in the closed 

form may also establish. Theoretical studies 

on the convergence of ADM are debated in 

(Adomian and Rach, 1992; Abbaoui and 

Cherruault, 1995; Cherruault et al., 1995; 

Babolian and Biazaar, 2002; El-Kalla, 

2007; Ray, 2014). Theorem 1 (Ray, 2014) 

establishes sufficient conditions for the 

existence of a unique solution. Theorem 2 

(Ray, 2014) demonstrates the convergence of 

the form of the series solution realized by 

ADM. The maximum errors of the solution 

that is gained by the ADM are proven in 

(Ray, 2014). 

 

The Application Process of LVIM to the (1+ n)D-STFBE: 
 

Consider the (1+n) D-STFBE represented by Eq.(1). The following steps describe the procedure 

of the LVIM  

Step1: Employing the Laplace transform to Eq.(1), we obtain  

𝑠𝛼£𝑡[𝑤(�⃑�, 𝑡)] − ∑ 𝑠𝛼−𝑘−1 𝜕𝑘𝑤(�⃑�,𝑡)

𝜕𝑡𝑘 |
𝑡=0

𝑚−1
𝑘=0 = −𝜖£𝑡 [𝑤(�⃑�, 𝑡) ( ∑ 𝐷𝑥𝑖

𝛽
𝑤(𝑥𝑖  , 𝑡)𝑛

𝑖=0 )] 

                                       +𝜇 £𝑡 [( ∑ 𝐷𝑥𝑖

2𝛽
𝑤(𝑥𝑖  , 𝑡)𝑛

𝑖=0 )] .                    (16)                           

Step2: Describe the vital iterative structure including the Lagrange multiplier as  

£𝑡[𝑤𝑁+1(�⃑�, 𝑡)] = £𝑡[𝑤𝑁(�⃑�, 𝑡)]+𝜆(𝑠)[𝑠𝛼£𝑡[𝑤𝑁(�⃑�, 𝑡)] − ∑ 𝑠𝛼−𝑘−1 𝜕𝑘𝑤(�⃑�,𝑡)

𝜕𝑡𝑘 |
𝑡=0

𝑚−1
𝑘=0                                                                                                 

                            −𝜖£𝑡 [𝑤𝑁(�⃑�, 𝑡) ( ∑ 𝐷𝑥𝑖

𝛽
𝑤𝑁(𝑥𝑖  , 𝑡)𝑛

𝑖=0 )] + 𝜇 £𝑡 [( ∑ 𝐷𝑥𝑖

2𝛽
𝑤𝑁(𝑥𝑖  , 𝑡)𝑛

𝑖=0 )].          (17) 

Considering £𝑡 [𝑤𝑁(�⃑�, 𝑡) ( ∑ 𝐷𝑥𝑖

𝛽
𝑤𝑁(𝑥𝑖 , 𝑡)𝑛

𝑖=0 )] and £𝑡 [( ∑ 𝐷𝑥𝑖

2𝛽
𝑤𝑁(𝑥𝑖  , 𝑡)𝑛

𝑖=0 )] as as restricted 

terms, so the Lagrange multiplier can be derived as  

 𝜆(𝑠) =
−1

𝑠𝛼   .                                                                                                                                  (18) 

Step3: By using Eq.(18) with the inverse Laplace transform £𝑡
−1, the iteration formula Eq.(17) is 

obtained as  

𝑤𝑁+1(�⃑�, 𝑡) = £𝑡
−1{

1

𝑠𝛼
∑ 𝑠𝛼−𝑘−1 𝜕𝑘𝑤(�⃑�,𝑡)

𝜕𝑡𝑘 |
𝑡=0

𝑚−1
𝑘=0 +

𝜖

𝑠𝛼 £𝑡 [𝑤𝑁(�⃑�, 𝑡)  ( ∑ 𝐷𝑥𝑖

𝛽
𝑤𝑁(𝑥𝑖  , 𝑡)𝑛

𝑖=0 )]   



107 
DJS Vol. 44 (2) (2022) – pp.101-123 ISSN: 1012-5965 

                          −
𝜇

𝑠𝛼 £𝑡[ ∑ 𝐷𝑥𝑖

2𝛽
𝑤𝑁(𝑥𝑖  , 𝑡)𝑛

𝑖=0 ]}.                                                               (19) 

Step 4: The initial iteration 𝑤 0 (𝑥
⇀

, 𝑡) is assumed as 

 𝑤0(�⃑�, 𝑡) = £𝑡
−1[

1

𝑠𝛼
∑ 𝑠𝛼−𝑘−1 𝜕𝑘𝑤(�⃑�,𝑡)

𝜕𝑡𝑘 |
𝑡=0

]𝑚−1
𝑘=0 .                                                                            (20) 

From Eqs.(2), (20) and (19), we get the solution as follows:  

𝑤0(�⃑�, 𝑡) = £𝑡
−1 [

1

𝑠𝛼
∑ 𝑠𝛼−𝑘−1 𝜕𝑘𝑤(�⃑�,𝑡)

𝜕𝑡𝑘 |
𝑡=0

𝑚−1
𝑘=0

 

] = 𝑤(�⃑�, 0) = 𝑓0(�⃑�), 

𝑤1(�⃑�, 𝑡) = 𝑓0(�⃑�) + 𝑞1(�⃑�)
𝑡𝛼

𝛤(𝛼+1)
,                                                                                                 (21)     

𝑤2(�⃑�, 𝑡) = 𝑓0(�⃑�) + 𝑞1(�⃑�)
𝑡𝛼

𝛤(𝛼+1)
+ 𝑞2(�⃑�)

𝑡2𝛼

𝛤(2𝛼+1)
+ 𝑞3(�⃑�)

𝑡3𝛼

𝛤(3𝛼+1)
,        

 ⋮ 

Where  

𝑓0(�⃑�) = 𝑤(�⃑�, 0), 

𝑞1(�⃑�) = 𝜇 (∑ 𝐷𝑥𝑖

2𝛽
𝑓0(𝑥𝑖  )

𝑛

𝑖=0

) − 𝜖𝑓0(�⃑�) (∑ 𝐷𝑥𝑖

𝛽
𝑓0(𝑥𝑖 )

𝑛

𝑖=0

),

 𝑞2(�⃑�) = 𝜇(∑ 𝐷𝑥𝑖

2𝛽
𝑞1(𝑥𝑖  )𝑛

𝑖=0 ) − 𝜖𝑞1(�⃑�)(∑ 𝐷𝑥𝑖

𝛽
𝑓0(𝑥𝑖 )𝑛

𝑖=0 )−𝜖𝑓0(�⃑�)(∑ 𝐷𝑥𝑖

𝛽
𝑞1(𝑥𝑖  )𝑛

𝑖=0 ),              (22)

 𝑞3(�⃑�) = −𝜖 𝑞1(�⃑�) (∑ 𝐷𝑥𝑖

𝛽
𝑞1(𝑥𝑖 )

𝑛

𝑖=0

)
𝛤(2𝛼 + 1)

(𝛤(𝛼 + 1))
2 . 

The exact solution is 𝑤 (𝑥
⇀

, 𝑡) = 𝑙𝑖𝑚𝑁→∞𝑤 𝑁(𝑥
⇀

, 𝑡)  . 

The convergence of VIM was discussed in detail in theorem 1 and theorem 2 (Obibat, 2010; 

Zedan et al., 2014). Theorem 3 (Obibat, 2010; Zedan et al., 2014) defines the maximum errors 

of the VIM solution.  

The Application Process of RDTM to the (1+ n)D-STFBE 

Consider the (1+n) D-STFBE represented by Eq.(1). We can summarize the procedure of the 

solution of the RDTM in the following steps: 

Step1: Employing the RDTM to Eq. (1), the subsequent repetitive formula is attained:  

𝑊𝑘+1(�⃑�) =
𝛤(𝑘𝛼+1)

𝛤((𝑘+1)𝛼+1)
[𝜇(∑ 𝐷𝑥𝑖

2𝛽
𝑊𝑘(𝑥𝑖  )𝑛

𝑖=0 ) − 𝜖 ∑ 𝑊𝑟(�⃑�)(∑ 𝐷𝑥𝑖

𝛽
𝑊𝑘−𝑟(𝑥𝑖 )𝑛

𝑖=0 )𝑘
𝑟=0 ],             (23)  

and the transformed initial condition is  

𝑊 0 (𝑥
⇀

) = 𝑤 (𝑥
⇀

, 0) = 𝑟 0 (𝑥
⇀

).                                                                                                      (24) 

Step 2: Using the initial iteration (24), the following 𝑊 𝑘 (𝑥
⇀

) values are obtained  

𝑊1(�⃑�) =
1

𝛤(𝛼+1)
[𝜇(∑ 𝐷𝑥𝑖

2𝛽
𝑊0(𝑥𝑖 )𝑛

𝑖=0 ) − 𝜖𝑊0(�⃑�)(∑ 𝐷𝑥𝑖

𝛽
𝑊0(𝑥𝑖 )𝑛

𝑖=0 )],   
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which can be written as                    

𝑊1(�⃑�) =
1

𝛤(𝛼+1)
𝑟1(�⃑�).                                                                                                                  (25) 

𝑊2(�⃑�) =
𝛤(𝛼+1)

𝛤(2𝛼+1)
[(𝜇 (∑ 𝐷𝑥𝑖

2𝛽
𝑊1(𝑥𝑖  )𝑛

𝑖=0 ) − 𝜖𝑊0(�⃑�) (∑ 𝐷𝑥𝑖

𝛽
𝑊1(𝑥𝑖  )𝑛

𝑖=0 ) − 𝜖𝑊1(�⃑�) (∑ 𝐷𝑥𝑖

𝛽
𝑊0(𝑥𝑖  )𝑛

𝑖=0 )],   

which can be written as 

𝑊2(�⃑�) =
1

𝛤(2𝛼+1)
𝑟2(�⃑�),                                                                                                                                                              

     ⋮ 

Step3: By means of the inverse transformation of the set of values; {𝑊 𝑘 (𝑥
⇀

)}
𝑘=0

∞
, the 

approximate solution is given as,  

�̃�𝑁(�⃑�, 𝑡) = ∑ 𝑊𝑘(�⃑�)𝑡𝑘𝛼𝑁
𝑘=0 ,  

�̃�𝑁(�⃑�, 𝑡) = 𝑟0(�⃑�) + 𝑟1(�⃑�)
𝑡𝛼

𝛤(𝛼+1)
+ 𝑟2(�⃑�)

𝑡2𝛼

𝛤(2𝛼+1)
+ ⋯,                                                               (26)  

where 𝑁 is order of the estimate solution and  

𝑟0(�⃑�) = 𝑤(�⃑�, 0),                                                                                                                                                                                                                               

𝑟1(�⃑�) = 𝜇 (∑ 𝐷𝑥𝑖

2𝛽
𝑟0(𝑥𝑖 )𝑛

𝑖=0 )  − 𝜖𝑟0(�⃑�) (∑ 𝐷𝑥𝑖

𝛽
𝑟0(𝑥𝑖 )𝑛

𝑖=0 ),                                                        (27)                                                          

𝑟2(�⃑�) = 𝜇 (∑ 𝐷𝑥𝑖

2𝛽
𝑟1(𝑥𝑖 )𝑛

𝑖=0 )  − 𝜖𝑟0(�⃑�) (∑ 𝐷𝑥𝑖

𝛽
𝑟1(𝑥𝑖  )𝑛

𝑖=0 ) − 𝜖𝑟1(�⃑�) (∑ 𝐷𝑥𝑖

𝛽
𝑟0(𝑥𝑖  )𝑛

𝑖=0 ), … 

Hence, the exact solution is assumed to be  𝑤 (𝑥
⇀

, 𝑡) = lim𝑁→∞�̃� 𝑁 (𝑥
⇀

, 𝑡).The convergence of the 

DTM was discussed in (Odibatet et al., 2016) while the maximum absolute error of RDTM was 

given in (Odibatet al., 2016).  

Numerical Applications and Discussion 

To illustrate the relevance and efficacy of the 

approaches proposed, We solved four 

applications using the approaches described 

in this research. Applications 1 and 2 

represent the one-dimensional fractional 

Burger equation (FBE), whereas 

Applications 3 and 4 represent the two-

dimensional fractional Burger equation 

(FBE)

Application 1 (Sripacharasakullert et al., 2019): Now, let’s test 1D-TSFBE  

𝐷𝑡
𝛼𝑤(𝑥, 𝑡) + 𝜖  𝑤(𝑥, 𝑡)  𝐷𝑥

𝛽
𝑤(𝑥, 𝑡) −   𝐷𝑥

2𝛽
𝑤(𝑥, 𝑡) = 0.                                                            (28) 

With initial condition  

𝑤(𝑥, 0) = 𝑥,                                                                                                                                 (29) 

where 0 < 𝑡 ≤ 1, 0  ≤ 𝑥 ≤ 1, 0 < 𝛼, 𝛽 ≤ 1.                       

At the special case 𝛼 = 𝛽 = 1, the exact solution of (28) is  

𝑤(𝑥, 𝑡) =
𝑥

1+𝜖  𝑡
 .                                                                                                                           (30) 
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 LADM Solution for Application 1  

By using the initial conditions (29), Eqs. (15) takes the following form  

 𝑓0(𝑥) = 𝑥, 

 𝑓1(𝑥) =
𝜖  𝑥2−𝛽

Γ(2−𝛽)
,                                                                                                                            (31)                                                    

𝑓2(𝑥) =
𝜖2  𝑥3−2𝛽  Γ(3−𝛽)

Γ(3−2𝛽)Γ(2−𝛽)
+

𝜖2  𝑥3−2𝛽  

(Γ(2−𝛽))2, 

by combining Eqs. (29), (31) and (14), the solution series is set as  

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯.  

               = 𝑓0(𝑥) + 𝑓1(𝑥)
𝑡𝛼

𝛤(1𝛼+1)
+ 𝑓2(𝑥)

𝑡2𝛼

𝛤(2𝛼+1)
+ ⋯.                                                              (32) 

LVIM Solution for Application 1 

By using the initial condition (29) within Eqs.(21), the first few iteration of LVIM solution are:  

𝑤0(𝑥) = 𝑥, 

𝑤1(𝑥) = 𝑥 − (
 𝜖𝑥2−𝛽

Г(2−𝛽)
) 

 𝑡𝛼

Г(𝛼+1)
,                                                                                                      (33) 

𝑤2(𝑥) = 𝑥 − (
 𝜖𝑥2−𝛽

Г(2−𝛽)
)

 𝑡𝛼

Г(𝛼+1)
+ (

𝜖2𝑥3−2𝛽(Г[3−2𝛽]+Г[2−𝛽]Г[3−𝛽])

Г(3−2𝛽)(Г(2−𝛽))
2 )

 𝑡2𝛼

Г(2𝛼+1)
                         

                  + (
𝜖2𝑥4−3𝛽 Г(3−𝛽)Г(1+2𝛼)

(Г(2−𝛽))
2

Г(3−2𝛽)(Г(1+𝛼))
2)

𝑡3𝛼

𝛤(3𝛼+1)
,                                                      

RDTM Solution for Application 1  

By sing Eq. (29), then Eqs. (25) take the sequential form   
 𝑊0(𝑥) = 𝑥, 

 𝑊1(𝑥) =
− 1

Г(𝛼+1)
(

 𝜖𝑥2−𝛽

Г(2−𝛽)
),  

 𝑊2(𝑥) =
 1

Г(2𝛼+1)
(

𝜖2𝑥3−2𝛽 Г(3−𝛽)

Г(3−2𝛽)Г(2−𝛽)
+

𝜖2𝑥3−2𝛽 

(Г(2−𝛽))
2),   

and so on, so the series solution of Eq.(26) will be  

𝑤(𝑥, 𝑡) = 𝑥 + (−
 𝛾𝑥2−𝛽

Г(2 − 𝛽)
)

 𝑡𝛼

Г(𝛼 + 1)
 

                      + (
𝜖2𝑥3−2𝛽 Г(3−𝛽)

Г(3−2𝛽)Г(2−𝛽)
+

𝜖2𝑥3−2𝛽 

(Г(2−𝛽))
2 −

𝜖2𝑥2−𝛽 Г(1+𝛼)

Г(2−𝛽)
)

 𝑡2𝛼

Г(2𝛼+1)
+ ⋯                                          (34)                                                                             

Numerical Study of Application 1 
 

 

The numerical results of application 1 

calculated by using five terms of the LADM, 

RDTM and LVIM are tabulated in Table 1 

and graphically illustrated in Figuers 1-3. 

Table 1 lists the absolute errors (AEs) for the 

three proposed methods at  α = β = 1, 𝑡 =

0.02, 𝜖 = 1 and method in (Yokus, 2018) at 

different values of 𝑥. The tabulated data show 

that the suggested three methods are more 

effective than the results in (Yokus, 2018) 

Figure 1((a), (b) and (c)) clarifies the space- 

time surfaces of the exact solution 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 
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and the approximate solutions 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 

obtained by LADM, LVIM and RDTM, 

respectively. Figures 2 illustrate the 𝑥-

direction curves of AEs for the analytical 

approximate solutions; 

𝑤𝐿𝐴𝐷𝑀, 𝑤𝐿𝑉𝐼𝑀 𝑎𝑛𝑑 𝑤𝑅𝐷𝑇𝑀  when  𝛽 = 𝛼 =
1, 𝜖 = 1, 0 ≤ 𝑥 ≤ 1 at various values of 𝑡 =
0.02, 0.1, 0.2    and 0.4. Figures 3 and 4 

clarify the behaviors of the estimated 

solutions of 𝑤 𝑎𝑝𝑝𝑟𝑜𝑥,𝑁
  by exhausting the 

suggested three methods at various values of 

𝛼 = 1 and 𝛽 = 0.4, 0.6, 0.8, 1 and for 

distinct values of the series solution terms 

𝑁 = 0,1,2,3,4 respectively. These Figures 

reveal the effectively, simplicity and higher 

accuracy of the proposed techniques.  

    
Fig. 1: The space time surfaces of the exact solution 𝑤𝐸𝑥𝑎𝑐𝑡 and (a) 𝑤𝐿𝐴𝐷𝑀, (b) 𝑤𝐿𝑉𝐼𝑀 (c) 𝑤𝑅𝐷𝑇𝑀 when   ϵ = 1, 0 ≤
x ≤ 1, 0 ≤ t ≤ 0.6 , β = α = 1 for application 1 

  
Fig. 2: The 𝒙-direction of AEs for LADM, LVIM and RDTM respectively, at 𝛼 = 𝛽 = 1, 𝜖 = 1, 0 ≤ 𝑥 ≤ 1, and 

distinct values of 𝑡 = 0.02, 0.1, 0.2, 0.4 for application 1.  
 

  
Fig. 3: The 𝑥 -direction curves of 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 gained by LADM, LVIM and RDTM respectively, for 𝜖 = 1, 0 ≤ 𝑥 ≤ 1,

𝑡 = 0.5, 𝛼 = 1, 𝛽 = 0.4, 0.6, 0.8, 1 and exact solution for   application 1. 
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Fig. 4: The 𝑥-direction curves of different 𝑁   of terms of 𝑤𝑎𝑝𝑝𝑟𝑜𝑥,𝑁(𝑥, 𝑡) attained by LADM, LVIM and RDTM 

respectively, 𝜖 = 1, 0 ≤ 𝑥 ≤ 1, 𝑡 = 0.25, 𝛼 = 𝛽 = 1.  𝑁 = 1, 2, 3, 4 and exact solution for application 1. 

 

Table 1:  Comparison of AEs, Obtained by Our Methods and The Results of (Yokus, 2018) when 

𝛼 = 𝛽 = 1, 𝑡 = 0.02, 𝜖 = 1 for application 1. 

   𝒙   LADM   LVIM  RDTM   FDM  

(Yokus, 2018) 

 GTSM 

(Yokus, 2018)   

 0.00   0.0   0.0   0.0   0.0   0.0  

 0.02   6.3 E-11   8.1 E-12   6.3 E-11   1.7 E-04   2.2 E-04  

 0.04   1.3 E-10   1.6 E-11   1.3 E-10   3.0 E-04   4.4 E-04  

 0.06   1.9 E-10   2.4 E-11   1.9 E-10   4.0 E-04   6.7 E-04  

 0.08   2.5 E-10   3.2 E-11   2.5 E-10   4.9 E-04   8.9 E-04  

 0.10   3.1 E-10   4.0 E-11   3.1 E-10   5.5 E-04   1.1 E-03  

 0.12   3.8 E-10   4.7 E-11   3.8 E-10   6.0 E-04   1.3 E-03  

  

Application 2: Consider the subsequent 1D- time fractional Burger equation  

𝐷𝑡
𝛼𝑤(𝑥, 𝑡) + 𝜖

𝜕𝑤(𝑥,𝑡)

𝜕𝑥
𝑤(𝑥, 𝑡) = 𝜇

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 ,                                                                                  (35) 

with initial condition  

𝑤(𝑥, 𝑡) =
𝑐

𝜖
−

𝑐

𝜖
  tanh [

𝑐

2𝜇
(𝑥)],                                                           (36) 

At 𝛼 = 1, the exact solution (Doha et al., 2013) is  

𝑤(𝑥, 𝑡) =
𝑐

𝜖
−

𝑐

𝜖
  tanh [

𝑐

2𝜇
(𝑥 − 𝑐𝑡)].                                                          (37) 

 LADM Solution for Application 2 

 By using the initial conditions (37) with the Eqs. (15), we get  

𝑓0 =
𝑐

𝜖
−

𝑐

𝜖
  tanh [

𝑐

2𝜇
(𝑥)], 

𝑓1(𝑥) =
𝑐3(sech[

𝑐𝑥

2𝜇
])2

2𝜖  𝜇
,                                                                          (38) 

𝑓2 =
4𝑐5(csch [

𝑐𝑥
𝜇

])3(sinh [
𝑐𝑥
2𝜇

])4

𝜖  𝜇2
. 
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The rest of the terms can be calculated in the same way; the solution in series form is provided by.  

𝑤(𝑥, 𝑡) =
𝑐

𝜖
−

𝑐

𝜖
 tanh [

𝑐

2𝜇
(𝑥)] + (

𝑐3sech[
𝑐𝑥

2𝜇
]

2

2𝜖𝜇
)

 𝑡𝛼

Г(𝛼+1)
+ (

4𝑐5csch[
𝑐𝑥

𝜇
]

3
sinh[

𝑐𝑥

2𝜇
]

4

𝜖𝜇2 )
 𝑡2𝛼

Г(2𝛼+1)
+ ⋯       (39)  

LVIM Solution for Application 2 

By using the initial conditions (36) within Eqs. (21), the first few iterations of LVIM solution are:  

𝑤 0
(𝑥) =

𝑐

𝜖
−

𝑐  tanh [
𝑐𝑥
2𝜇

]

𝜖
, 

𝑤 1 =
𝑐

𝜖
−

𝑐  tanh[
𝑐𝑥

2𝜇
]

𝜖
+ [

𝑐3(sech[
𝑐𝑥

2𝜇
])2

2𝜖  𝜇
]

  𝑡𝛼

Γ(𝛼+1)
,                                                                                  (40)                               

w2 =
𝑐

𝜖
−

𝑐  tanh [
𝑐𝑥
2𝜇

]

𝜖
+ [

(𝑐3(sech [
𝑐𝑥
2𝜇

])2)

2𝜖  𝜇
]

  𝑡𝛼

Γ(𝛼 + 1)
 

 + [
4𝑐5(csch[

𝑐𝑥

𝜇
])3(sinh[

𝑐𝑥

2𝜇
])4

𝜖  𝜇2 ]
𝑡2𝛼

Γ(2𝛼+1)  
+ [

8𝑐7Γ[1+2𝛼](csch[
𝑐𝑥

𝜇
])5(sinh[

𝑐𝑥

2𝜇
])6

𝜖  𝜇3(Γ(1+𝛼))2 ]
𝑡3𝛼

Γ(3𝛼+1)  
, 

  

RDTM Solution of Application 2 
 

Using Eq. (36), then Eqs. (25) take the form  

𝑊 0
(𝑥) =

𝑐

𝜖
−

𝑐

𝜖
  tanh [

𝑐

2𝜇
(𝑥)], 

𝑊 1
(𝑥) =

0.5𝑐3sech[
𝑐𝑥
2𝜇

]2

𝜖  𝜇Γ(1 + 𝛼)
, 

𝑊 2
(𝑥) =

4. 𝑐5(csch [
𝑐  𝑥

𝜇
])3(sinh[

𝑐  𝑥
2𝜇

])4

𝜖  𝜇2Γ([1 + 2𝛼)
, 

⋮ 
In the similar manner, the remainder terms of the solution series can be calculated. So the series 

solution Eq. (26) takes the following form  

𝑤(𝑥, 𝑡) =
𝑐

𝜖
−

𝑐

𝜖
tanh [

𝑐

2𝜇
(𝑥)] + [

0.5  𝑐3  sech[
𝑐𝑥

2𝜇
]2

𝜖  𝜇
]

  𝑡𝛼

Γ(𝛼+1)
+ [

0.5𝑐5sech[
𝑐𝑥

2𝜇
]2tanh[

𝑐𝑥

2𝜇
]

𝜖  𝜇2 ]
  𝑡2𝛼

Γ(2𝛼+1)
+ ⋯   (41) 

 

Numerical Study of Application 2 
 

The numerical results of application 2 are 

recorded in Table 2 and clearly shown 

through        Figures 5-8. The numerical 

comparisons based on the maximum absolute 

errors (MAEs) are tabulated in Table 2 

between the analytical solutions 

𝑤 𝑎𝑝𝑝𝑟𝑜𝑥,𝑁
(𝑥, 𝑡) obtained by the three 

proposed methods (LADM, LVIM and 

RDTM) and the Jacobi spectral collocation 

method (JSCM) in (Doha et al., 2013) at 𝛼 =
1, 0 ≤ 𝑥 ≤ 1, 0 < 𝑡 ≤ 1, 𝜇 = 0.1, 𝜖 = 10,
𝑐 = 0.1 for various choices of the used terms 

𝑁. It is observed that the analytical solutions 

attained by the three suggested techniques 

converge to the exact solution by using few 

terms of 𝑤 𝑎𝑝𝑝𝑟𝑜𝑥,𝑁
(𝑥, 𝑡). Also, the 
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comparison manifests that the proposed 

methods are better than JSCM (Doha et al., 

2013). To check the effectiveness of the 

anticipated techniques for different values of 

the viscosity coefficient, the surface plots of 

the exact and approximate solutions are 

described in Figures 5 and 6. The 𝑡 –direction 

curves of the exact and the computed 

solutions of 𝑤𝐿𝐴𝐷𝑀, 𝑤𝐿𝑉𝐼𝑀  and 𝑤𝑅𝐷𝑇𝑀at 

different values of 𝑥  (𝑥 = 0.1, 0.4, 0.7) are 

depicted in Figure 7. The behaviors of the 

estimated solutions𝑤𝐿𝐴𝐷𝑀, 𝑤𝐿𝑉𝐼𝑀  and 

𝑤𝑅𝐷𝑇𝑀at different values of 𝛼, (𝛼 =  1,
0.95, 0.85, 0.75  𝑎𝑛𝑑    0.65) with exact 

solution are displayed in Figure 8. These 

figures show that the solutions obtained by 

the five terms of the series solution of the 

LADM, LVIM and RDTM are in a good 

agreement with the exact solution. Also, it is 

clear that by calculating additional terms of 

the series Eqs. (39), (40) and (41) the 

achieved error will be smaller

Table 2: Comparison of MAEs for Various Values of 𝑁 Terms of The Proposed Methods with 

JSCM (Doha, 2013) for Application 2.  

 

The Proposed methods JSCM (Doha et al., 2013) at various 

choices(𝛂, 𝛃) 

𝑵 LADM LVIM RDTM 𝑵 (𝟎, 𝟎) (
𝟏

𝟐
,

𝟏

𝟐
) (−

𝟏

𝟐
, −

𝟏

𝟐
) (−

𝟏

𝟐
,

𝟏

𝟐
) 

1 𝟗. 𝟎𝑬 − 𝟔 𝟗. 𝟎𝑬 − 𝟔 𝟗. 𝟎𝑬 − 𝟔 4 𝟏. 𝟓𝑬 − 𝟔 𝟐. 𝟓𝑬 − 𝟔 𝟔. 𝟓𝑬 − 𝟔 𝟑. 𝟖𝑬 − 𝟔 

2 𝟒. 𝟐𝑬 − 𝟕 𝟓. 𝟏𝑬 − 𝟕 𝟒. 𝟐𝑬 − 𝟕 

3 𝟏. 𝟏𝑬 − 𝟖 𝟐. 𝟕𝑬 − 𝟖 𝟏. 𝟓𝑬 − 𝟖 16 𝟏. 𝟒𝑬 − 𝟗 𝟏. 𝟔𝑬 − 𝟗 𝟔. 𝟕𝑬 − 𝟏𝟎 𝟔. 𝟕𝑬 − 𝟏𝟎 

4 𝟒. 𝟎𝑬 − 𝟏𝟎 𝟏. 𝟑 𝑬 − 𝟏𝟎 𝟒. 𝟎 𝑬 − 𝟏𝟎 

 

 

Fig. 5: The space-time surfaces of the approximate solutions 𝑤𝑎𝑝𝑝𝑟𝑜𝑥of application 2 for   ϵ = 10, c = 0.1 μ = 0.1 

achieved by LADM, LVIM and RDTM respectively, with the exact solution. 

 
Fig. 6: The space- time surfaces of the approximate solutions 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 of Application 2  for   ϵ = 10, c = 0.1, μ =

0.01 achieved by LADM, LVIM and RDTM respectively, with the exact solution. 
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Fig. 7: The 𝑡-direction curves of 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 of application 2 gotten by LADM, LVIM and RDTM respectively when 

  ϵ = 10, c = 0.1,    μ = 0.1 and the exact solution. 

 

Fig. 8: The 𝒕-direction of curves of 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 for application 2 attained by LADM, LVIM and RDTM respectively, at 

different values of 𝛼 for   ϵ = 10, c = 0.1, μ = 0.1. 
 

Application 3 (Sripacharasakullert et al., 2019): For the following 2D-STFBE:  

𝐷𝑡
𝛼𝑤(𝑥, 𝑦, 𝑡) = −𝜖  𝑤(  𝐷𝑥

𝛽
𝑤 + 𝐷𝑦

𝛽
𝑤) + 𝜇(  𝐷𝑥

2𝛽
𝑤 + 𝐷𝑦

2𝛽
𝑤),                                                 (42) 

with initial condition  

𝑤(𝑥, 𝑦, 0) = 𝑥 + 𝑦,           ∀(𝑥, 𝑦) ∈ [0,1] × [0,1].                                                                      (43) 

The exact solution of Eq. (44) at 𝛼 = 𝛽 = 1 is    

𝑤(𝑥, 𝑦, 𝑡) =
𝑥+𝑦

1+𝜖  𝑡
.                                                                                                                        (44) 

LADM Solution of Application 3 
  

By using the initial condition (43), Eqs.(15) takes the next form  

𝑓0(𝑥, 𝑦) = 𝑥 + 𝑦, 

𝑓1(𝑥, 𝑦) =
−𝜖  𝑥−𝛽𝑦−𝛽(𝑥1+𝛽𝑦+𝑥𝛽𝑦2−𝑥2𝑦𝛽+𝑥𝑦1+𝛽)

Γ(2−𝛽)
,                                                                           (45) 

𝑓2(𝑥, 𝑦) =
𝜖2  Γ(3−𝛽)(𝑥+𝑦)(𝑥2−2𝛽+𝑦2−2𝛽)

Γ(1+2𝛼)Γ(3−2𝛽)Γ(2−𝛽)
+

𝜖2  (𝑥+𝑦)(𝑥1−𝛽+𝑦1−𝛽)
2

Γ(1+2𝛼)(Γ(2−𝛽))2 +
2𝜖2  (𝑥+𝑦)(𝑥𝑦)1−𝛽

Γ(1+2𝛼)(Γ(2−𝛽))2  .    

By the similar manner, the lasting terms can be evaluated. 

So by using Eq.(43), Eqs. (45) and Eq. (14), the solution in the series form will be:  
 

𝑤(𝑥, 𝑦, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) + 𝑤 1
(𝑥, 𝑦, 𝑡) + 𝑤 3

(𝑥, 𝑦, 𝑡) + ⋯ 
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𝑤(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛤(𝛼+1)
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

𝛤(2𝛼+1)
+ ⋯.                                                 (46) 

 

LVIM Solution of Application 3  
 

By using the initial conditions (43) within Eqs.(21), the first few iterations of LVIM solution are:  
 

𝑤0(𝑥, 𝑦) = 𝑥 + 𝑦, 

𝑤1(𝑥, 𝑦, 𝑡) = 𝑥 + 𝑦 − 𝜖 (
𝑥1−𝛽

Г(2−𝛽)
+

𝑦1−𝛽

Г(2−𝛽)
) (𝑥 + 𝑦)

 𝑡𝛼

Г(𝛼+1)
,                                                         (47)    

𝑤2(𝑥, 𝑦, 𝑡) = 𝑥 + 𝑦 −
𝜖𝑡𝛼𝑥−𝛽𝑦−𝛽(𝑥+𝑦)(𝑥𝛽𝑦+𝑥𝑦𝛽)

Г[1+𝛼]Г[2−𝛽]
,  

       +
𝑎2𝑡2𝛼𝑥−2𝛽𝑦−2𝛽(𝑥+𝑦)((𝑥2𝛽𝑦2+𝑥2𝑦2𝛽+4𝑥1+𝛽𝑦1+𝛽)Г[3−2𝛽]+(𝑥2𝛽𝑦2+𝑥2𝑦2𝛽)Г[2−𝛽]Г[3−𝛽])

Г[1+2𝛼]Г[3−2𝛽](Г[2−𝛽])2    

      −
𝜖3𝑡3𝛼𝑥−3𝛽𝑦−3𝛽(𝑥+𝑦)(𝑥𝛽𝑦+𝑥𝑦𝛽)Г[1+2𝛼](2𝑥1+𝛽𝑦1+𝛽Г[3−2𝛽]+(𝑥2𝛽𝑦2+𝑥2𝑦2𝛽)Г[2−𝛽]Г[3−𝛽])

(Г[1+𝛼])2Г[1+3𝛼]Г[3−2𝛽](Г[2−𝛽])3  ,  

 ⋮                                 

 RDTM Solution of Application 3 
 

 By using Eq.(43), then Eqs. (25) take the next form  

 

𝑊 0
(𝑥, 𝑦)By using Eq.(43), then Eqs. (25) take the following form 

𝑊0(𝑥, 𝑦) = 𝑥 + 𝑦, 

𝑊1(𝑥, 𝑦) = −
 𝜖(𝑥+𝑦)

Г(𝛼+1)
(

𝑥1−𝛽

Г(2−𝛽)
+

𝑦1−𝛽

Г(2−𝛽)
),                                                                                       (48) 

𝑊2(𝑥, 𝑦) =
𝜖2Г[3 − 𝛽](𝑥 + 𝑦)(𝑥2−2𝛽 + 𝑦2−2𝛽)

Г[1 + 2𝛼]Г[3 − 2𝛽]Г[2 − 𝛽]
+

𝜖2(𝑥 + 𝑦)(𝑥1−𝛽 + 𝑦1−𝛽)
2

Г[1 + 2𝛼](Г[2 − 𝛽])2

+
2𝜖2(𝑥 + 𝑦)(𝑥𝑦)1−𝛽

Г[1 + 2𝛼](Г[2 − 𝛽])2
, 

⋮ 

By the similar manner, the lasting terms of the series Eqs. (25) can be determined. The series 

solution Eq.(26) takes the form  

 

𝑤(𝑥, 𝑦, 𝑡) = ∑∞
𝑘=0 𝑊 𝑘

(𝑥, 𝑦)𝑡𝑘𝛼 .                                                                                                  (49) 

Numerical Study of Application 3 

 

Table 3 tabulates the 𝐿2-norm errors, 

√∑𝑛
𝑖=0 (𝑤 𝑎𝑝𝑝𝑟𝑜𝑥

(𝑥𝑖 , 𝑦𝑖 , 𝑡) − 𝑤𝑒𝑥𝑎𝑐𝑡(𝑥𝑖 , 𝑦𝑖 , 𝑡))
2

ℎ, 

of the three anticipated techniques at 0 ≤

𝑥, 𝑦 ≤ 1, ℎ = 0.1, 𝜖 = 0.1, 𝜇 = 1 at 

dissimilar values of 𝑡. It is notable that in 

application 3, the evaluated solutions 

achieved by LVIM converge quicker than the 

approximate solution by LADM and RDTM. 

It is also obvious that the effectiveness and 

the accuracy of these approaches can be 

significantly improved by calculating more 

terms of LADM or LVIM or RDTM. It’s 



116 
DJS Vol. 44 (2) (2022) – pp.101-123 ISSN: 1012-5965 

worthy mentioned that the numerical results 

in Table 3 are obtained by using three 

iterations only of the proposed schemes. To 

illustrate the precision of the anticipated 

techniques, graphical representations of the 

analytical approximate solutions 

of  𝑤(𝑥, 𝑦, 𝑡) for various values of the 

parameters ϵ (ϵ =     0.1    and  0.01)  when 

μ = 1  y = 0.1, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1. In 

Figures 9 and 10, the exact solution is shown. 

Figure 11 compares the behaviour of the 

computed 𝑤(𝑥, 𝑦, 𝑡) solutions using LADM, 

LVIM, and RDTM with the precise solution 

at various 𝛼    (𝛼  =   1, 0.95,

0.85  𝑎𝑛𝑑  0.65) and 𝛽    (𝛽  =   1, 0.9,

0.7  𝑎𝑛𝑑  0.5) values. When the value of the 

fractional order approaches unity, these 

graphs indicate that the obtained solutions 

cover the traditional results. Furthermore, the 

suggested techniques are precise and 

effective. They also have an excellent 

understanding of one other’s perspectives. 

 

Table  3:  The 𝐿2-Norm Error for The Proposed Methods for Application 3 at:   
𝑦 ≤ 1,0 ≤ 𝑥, ℎ = 0.1, 𝜖 = 0.1, 𝜇 = 1. 
𝐋𝟐-norm of the suggested methods 

t LADM LVIM RDTM 

0.02 3.2E − 10 1.1E − 10 3.2E − 10 

0.1 1.9E − 07 6.4 E − 08 1.9E − 07 

0.2 3.1E − 06 9.8 E − 07 3.1 E − 06 

0.3 1.5E − 05 4.8 E − 06 1.5E − 05 

0.4 4.7E − 05 1.4 E − 05 4.7 E − 05 

0.5 1.1E − 04 3.4 E − 05 1.1 E − 04 

0.6 2.3E − 04 6.8 E − 05 2.3 E − 04 

0.7 4.2E − 04 1.2 E − 04 4.2E − 04 

0.8 7.0E − 04 2.0 E − 04 7.0  E − 04 

0.9 1.1E − 03 3.1 E − 04 1.1  E − 03 

1 1.7E − 03 4.5 E − 04 1.7  E − 03 

  

Fig. 9: The space-time surfaces of the approximate solutions 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 of application 3 obtained by LADM, LVIM 

and RDTM respectively, for ϵ = 0.1, μ = 1, 0 ≤ 𝑥, 𝑡 ≤ 1  𝑦 = 0.1 and the exact solution. 
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Fig. 10: The space-time surfaces of the approximate solutions 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 of application 3 obtained by LADM, LVIM 

and RDTM respectively, forϵ = 0.01, μ = 1, 0 ≤ 𝑥, 𝑡 ≤ 1  𝑦 = 0.1 with the exact solution. 

  

  

Fig. 11: The 𝑥-direction of curves of   𝑤𝑎𝑝𝑝𝑟𝑜𝑥 of application 3 obtained by LADM, LVIM and RDTM respectively, 

at different values of 𝛼 and 𝛽 when  ϵ = 1, y = 0.1, μ = 1, t = 0.1. 

 

Application 4: Consider the subsequent 2D- time fractional Burger equation (2D-TFBE):  

𝐷𝑡
𝛼𝑤(𝑥, 𝑦, 𝑡) + 𝑤 (  

𝜕𝑤

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
) = 𝜇 (  

𝜕2  𝑤

𝜕2𝑥
+

𝜕2  𝑤

𝜕2𝑦
).                                                                    (50) 

With the initial condition  

𝑤(𝑥, 𝑦, 0) = (1 + 𝑒
[
𝑥+𝑦

2𝜇
]
)−1.                                                                                                        (51) 

The exact solution of Eq. (50) at 𝛼 = 𝛽 = 1 is  

𝑤(𝑥, 𝑦, 𝑡) = (1 + 𝑒
[
𝑥+𝑦−𝑡

2𝜇
]
)

−1

.                                                                                                     (52) 

 

LADM Solution for Application 4  
 

By using the initial condition (51), Eqs. (15) take the form  
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𝑓0(𝑥, 𝑦) = (1 + 𝑒
[
𝑥+𝑦

2𝜇
]
)−1,

𝑓1(𝑥, 𝑦) =
𝑒

[
𝑥+𝑦
2𝜇

]
(1+𝑒

[
𝑥+𝑦
2𝜇

]
)−2

2𝜇
,

𝑓2(𝑥, 𝑦) =
𝑒

[
𝑥+𝑦

𝜇
]
−𝑒

[
𝑥+𝑦
2𝜇

]
(1+𝑒

[
𝑥+𝑦
2𝜇

]
)−3

4𝜇2 .

                                                                                           (53) 

In the same way, the rest of the terms can be determined. Then by using Eqs.(51), (53) and (14), 

the series solution will be  

𝑤(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛤(1𝛼+1)
+ 𝑓2(𝑥, 𝑦)

𝑡2𝛼

𝛤(2𝛼+1)
+ ⋯.                                                (54) 

 

LVIM Solution of Application 4  
 

By using the initial conditions (51), the first few terms of the solution will  

𝑤 0
(𝑥, 𝑦) = (1 + e

[
𝑥+𝑦

2𝜇
]
  )

−1

,

𝑤 1
(𝑥, 𝑦, 𝑡) = (1 + e

[
𝑥+𝑦

2𝜇
]
  )

−1

+ [
e

[
𝑥+𝑦
2𝜇

]
  (1+e

[
𝑥+𝑦
2𝜇

]
  )−2

2𝜇
]

  𝑡𝛼

Γ(𝛼+1)
,

𝑤 2
(𝑥, 𝑦, 𝑡) = (1 + e

[
𝑥+𝑦

2𝜇
]
  )

−1

+ [
e

[
𝑥+𝑦
2𝜇

]
  (1+e

[
𝑥+𝑦
2𝜇

]
  )

−2

2𝜇
]

  𝑡𝛼

Γ(𝛼+1)
                              

+ [
(e

[
𝑥+𝑦

𝜇
]
  −e

[
𝑥+𝑦
2𝜇

]
  )(1+e

[
𝑥+𝑦
2𝜇

]
  )

−3

4𝜇2 ]
  𝑡2𝛼

Γ(2𝛼+1)

+ [
e

[
𝑥+𝑦

𝜇
]
  (1+e

[
𝑥+𝑦
2𝜇

]
  )(1+e

[
𝑥+𝑦
2𝜇

]
  )−5(2𝛼+1)

4𝜇3(Γ(𝛼+1))2 ]
  𝑡3𝛼

Γ(3𝛼+1)
.

                        (55) 

 

RDTM Solution of Application 4 
 

Using Eqs. (51), the first few terms of Eqs. (25) take the form  

 

𝑊 0
(𝑥, 𝑦) = (1 + e

[
𝑥+𝑦

2𝜇
]
)

−1

,

𝑊 1
(𝑥, 𝑦) =

1

Γ(1+𝛼)
(0.5  e

[
𝑥+𝑦

2𝜇
]
  (1. +e

[
𝑥+𝑦

2𝜇
]
  )

−2

) ,

𝑊 2
(𝑥, 𝑦) =

  1

Γ(2𝛼+1)
[

e
[
𝑥+𝑦
2𝜇

]
  (−0.25+0.25Exp[

𝑥+𝑦

𝜇
]  )(1.+e

[
𝑥+𝑦
2𝜇

]
  )−4

𝜇2 ] .

                                                   (56) 

By similar manner, the excess terms of the series solution Eqs. (25) can be determined. Then 

Eq.(26) takes the form 

  

𝑤(𝑥, 𝑦, 𝑡) = ∑∞
𝑘=0 𝑊 𝑘

(𝑥, 𝑦)𝑡𝑘𝛼 .                                                                                                  (57) 
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Numerical Study of Application 4 
 

Table 4 tabulates the 𝐿2-norm errors of 

application 4 at various values of 𝜇 and 𝑁 for 

the suggested methods at 0 ≤ 𝑥, 𝑦 ≤ 1, and 

different values of 𝑡 with the Chebyshev 

collocation method (CCM) (Khater et al., 

2008). The numerical results show that the 

estimated solutions achieved by our proposed 

methods converge quicker than the 

approximate solution by CCM (Khater et al., 

2008). It is apparent that the efficacy of these 

attitudes can be significantly improved by 

calculating more terms. The 𝑡-direction of 

curves of  𝑤 𝑎𝑝𝑝𝑟𝑜𝑥
 attained by offered 

methods when 𝜇 = 1, 𝛼 = 1, with exact 

solution is illustrated in Figure 12. Figure 13 

illustrates the behaviors of the computed 

solutions of 𝑤(𝑥, 𝑦, 𝑡) consuming the 

proposed approaches at several values of 

𝛼, (𝛼  =   1,    0.95,    0.85, 0.65 and 0.45) 

with the exact solution. 

 

Table  4:  Comparison of The 𝑳𝟐-Norm for The Suggested Methods with The CCM (Khater et 

al., 2008) at Various Values of 𝝁 and 𝑵 for Application 4 at:  𝟎 ≤ 𝒙, 𝒚 ≤ 𝟏 

  

The Suggested Methods 

𝑡 𝜇 𝑁 LADM LVIM RDTM 

 

0.05 

1 3 2.1𝐸 − 09 5.2𝐸 − 09 2.1𝐸 − 09 

4 2.0𝐸 − 11 8.2𝐸 − 11 2.0𝐸 − 11 

0.1 3 2.1𝐸 − 05 5.5𝐸 − 05 2.1𝐸 − 05 

4 2.0𝐸 − 06 9.0𝐸 − 06 2.0𝐸 − 06 

 

0.25 

1 3 1.3 𝐸 − 06 3.3𝐸 − 06 1.3𝐸 − 06 

4 6.4𝐸 − 08 2.7𝐸 − 07 6.4𝐸 − 08 

0.1 3 1.2𝐸 − 02 4.5𝐸 − 02 1.2𝐸 − 02 

4 6.0𝐸 − 03 3.5𝐸 − 02 6.0𝐸 − 03 

The 𝑳𝟐-Norm Errors for Various of 𝝁 and (𝑵, 𝑵) for CCM (Khater et al., 2008) 

 

0.05 

1 (10,10) 7.5𝐸 − 07 

0.1 (10,10) 1.3𝐸 − 06 

 

0.25 

1 (10,10) 8.1𝐸 − 07 

0.1 (10,10) 2.1𝐸 − 06 

 

Fig. 12: The 𝑡-direction curves of 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 of application 4 gained by LADM, LVIM and RDTM respectively, when 

𝛼 = 1, μ = 0.1 and the exact solution.   
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Fig.13: The 𝑡-direction of curves of 𝑤𝑎𝑝𝑝𝑟𝑜𝑥 of application 4 achieved by LADM, LVIM and RDTM respectively, at 

various 𝛼 values when   y = 0.7, μ = 1, x = 0.1  and the exact solution. 

  Conclusions 

In this work, three effective semi-analytical 

methods including the LADM, LVIM, and 

RDTM have been effectively implemented to 

solve the (1+n)D-STFBE. The solution was 

presented as a convergent series with easily 

calculable components using the approaches. 

Numerical analyses of four different models 

of fractional Burgers’ equation in one and 

two-dimensional spaces were used to 

demonstrate the efficacy of the proposed 

approaches. The numerical comparisons of 

the approaches in (Khater et al., 2008; Doha 

et al., 2013; Yokus, 2018) with the suggested 

procedures and the exact solution are 

exhibited. It is clear that only a few 

components of the LADM, RDTM, and 

LVIM series solutions were adequate for 

evaluating successful approximation 

solutions for the 1D and 2D Burgers’ 

equation. It is obvious that the efficacy of the 

offered approaches can be enhanced by 

computing more components or terms, and it 

is noteworthy that the solutions are 

influenced by time-fractional derivatives. 

Furthermore, the results obtained by the three 

methods given were sufficient to obtain 

accurate solutions to the aforementioned 

problems and were more accurate than the 

results in (Khater et al., 2008; Doha et al.,, 

2013; Yokus, 2018). 
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 الملخص العربي

 ( من الأبعاد لمعادلة برجر ذات الرتبة الكسرية1)ن +  دقارنة لطرق فعالة لحل نموذج جديم ةدراس

 و مفيدة على زكى احمد هدى فرغل ،محمد سباق محمد بهجات

 مصر -قسم الرياضيات كلية العلوم جامعة المنيا 

( من للأبمد   علمد  عدم بيجي  لل لعيي دم لعة ددددييدم سيقدم   يل ددددم يل ل لدم 1يقدم  لعملدا لعلد عل ل تق يقيي لدم عجلت جدي  جدميدميل      

أ سمل     -مق ينم عثلاث طيق شدد ت يل ل لم ام عم علا  مم  عم بيجي من لعيي م لعة ددييمط لعايق لعل ددهيممم قل طييقم  بلا 

      Laplace لعهغلي لعهةيليي - بلا  ، طييقم (Laplace Adomian decomposition method   LADMلعهل ل لم  

variational iteration method  (LVIMطييقم إخهزلق لعهلتعلم لعهف ضدددد لم س Reduce differential transform 

method   RDTM    لعل تق  س  أي يقميي أس يقللمط علاسة ع ى  عك ،  (ط لعايق لعلقهيلم ي دديم  لعودديسط للأسعلم اقج  ي

ط يهم يقميم  يل دد ل يل ل ت كا لم اله  يلةن ل دد بت أس إي   ه ب ددهتقيق يبلت ،    نه ئلت يةت  قذه لعل تق ال شددةا مه دد  دد م

علق ينم لعايق    سعم يم لأيبمم يا لق ل من مم  عم بيجي من لعيي ت لعة ددييم عهتضددلع ا ع لت س لم لعايق لعل ددهيممت، سكذعك

خصدد ئا لعل تق   يتضددلعمع بمضدده  لع مو سمع لعايق للأخيا لعل ددهيممم ال لعميل دد ل لعله لم للأخياط ب إضدد ام إعى 

 ع ها لق ل ل يبمم عجم يغللي يي م لعهف ضا لعة ياط كل  يظهي لعجه ئج لعمم يم ام علم س لم لعايق لعل هيمممط

 

 


