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In this work, we implement relatively new analytical
techniques, the new iterative method (NIM) and homotopy
perturbation method (HPM), for solving linear and nonlinear
integro-differential equations of fractional derivative order. The
fractional derivatives are described in the Caputo sense. The two
methods in applied mathematics can be used as alternative methods
for obtaining analytical and approximate solutions for different
types of fractional differential and integro-differential equations. In
these schemes, the solution takes the form of a convergent series
with easily computable components. Numerical results show that
the two approaches are easy to implement and accurate when
applied to integro-differential equations of fractional derivative

order.

1. Introduction

In the

past  decades, both
mathematicians and physicists have devoted
considerable effort to fined robust and
stable numerical and analytical methods for

solving fractional differential and integro-
differential equations of physical interest.
Numerical and analytical methods have
included finite difference method [1-3],
Adomian decomposition method [4-8],
variational  iteration method [9-12],
homotopy perturbation method (HPM) [13-
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16], generalized differential transform
method [17-20], homotopy analysis method
[21-23] and new iterative method (NIM)
[24-30, 44, 45]. Among them, the HPM and
the NIM [13-16, 24-30, 44, 45] provides an
effective procedure for explicit and
numerical solutions of a wide and general
class of differential and integro-differential
systems  representing real  physical
problems. In both methods, the validity of
them is independent of whether or not there
exist small parameters in the considered
equation.

The motivation of this work is to extend
the analysis of both the NIM pro- posed by
Gejji-Jafari [24-32] and the HPM proposed
by He [13-16] with a reliable algorithms to
solve linear and nonlinear integro-
differential equations with fractional
derivative order defined as follows:
nonlinear  integro-differential equations
with fractional derivative order defined as
follows:

y @ ) +f (x)y (x)+

b
+Hw (e, )y @ (e)y ™ (1)ydi=g(x) (la)

a
dky
dxk

where #h, , k=0,1,2,..,n—-1 are real

=l , k=0,1,2,..,n—1; by eR (1b)

constants, g, m, n are integers and «a is
fraction with g <m <n—-1<a<n. In (1)
the functions f, g and w are given solution.
The obtained results shown that these
methods with the modification algorithms
are very simple and effective.

For considering some properties of the

fractional order differential operator, con-

sider the nonlinear differential equation:

D&y (x)=f ¥,y y" D), x>0
@)

where n-l<a<n, f 1is a nonlinear

function and D% denotes the differential
operator in the sense of Caputo [33],
defined by:
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DY f (x)=1{"" Dy f (x). 3)
Here DY is the usual differential operator

of order @ and I is the Riemann-Liouvil

integral operator of order « >0, defined
by:
l X
f)=——[(x=-5"1(5d o),
F(a)
x >0. (4)

and DY
can be found in [34, 35], we mention only
the following, for /' <C,, p=-1, 20

Properties of the operators 7

and v >-1:

- 1818 F (x)=12"Pf (x)
10121 (x),

2- 1%x" = (v +1) vt
rv+l+a)

3- DI =—F(v+1) xV e
rv+l-a)

2. Analysis of the Methods.

In this section, we discuss the analysis
and the algorithms of the two considered
methods.

2.1. New Iterative Method.

Consider the following general functional
equation [24-32]:
y(x)=f(x)+N(y(x)), (&)
where N is a nonlinear operator from a
Banach space B —»B and f is a known
function (element) of the Banach space B.
We are looking for a solution y of Equation
(5) having the series form:

o0
y(x)=2 yi(x). (6)
i=0
The nonlinear operator N can be
decomposed as:

N[Z Vi ]=N(yo)
i=0



i=1

0 i i-1
AN D i |FN X v |-
j=0 7=0
From Equations (6) and (7), Equation (5) is

equivalent to:

2. Vi=/+N (o)

i=0

+§, N{i)ﬁ'}—]\/[ih} (3

We define the recurrence relation:

Yo =f >
y1=N(y9),
Ynn =N (o +yitety,) €
N (o+yi+-Vua)s
n=1,2, ...
Then
1+y2 4ty =N (o +y1+-+yy,),
n=1,2, .., (10)
and
o0
EDINTE (1)
i=0
Then n-term approximate solution of
Equations (5) and (6) is given by
n—l
y(x)=D y;.
i=0

Remark 1. If N is a contraction, i.e.,
[IN(xX)-N)<sklx-y|, 0<k<l,
then:

1
Iy ISE"™ I yoll, n=0,1,2, ...

Proof. From Equation (9), we have:

Yo=/
[yi =N (o) lI<k llyoll
ly2 ll=IIN(yo+y1)
N (yo) <k [y 1<k 1o |,
ly3I=IIN(yo+y1+y2)
N (yo+y) <k [[yyl
<k ol

||yn+1 ||=HN(yO+"'+yn)
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N (yo +typa) |l
1
<k ly, 1<K lyo lls

0
n=0,1,.., and the series » y;
i=0

absolutely and uniformly converges to a
solution of Equation (5) [36],
unique in vies of the Banach fixed point
theorem [37].

which is

2.2. The Reliable Algorithm.

After the above presentation of the new
iterative method, we present a reliable
approach of this method. This
modification can be

new
implemented for
integer order and fractional order linear and
nonlinear integro-differential equations. To
illustrate the basic idea of the new
algorithm, we consider the
integro-differential equation with fractional
derivative order (1) defined as follows:

nonlinear

DYy (x)+f (x)y (x)

b
+w e, )y @ )y "™ (1) d t=g(x) (12a)

with the initial conditions:
k

d” y(0)
dxk

th . k 20, 1, 2, I ) —1; hk ER.

(12b)
In view of the new iterative method, the
above nonlinear integro-differential
equation (12) is equivalent to the nonlinear

integral equation:

y(x)=I{ g (x)]-1I¢ {f (x)y(x)

b
+fw (e, )y @ @)y )d z}

a

=f =-N), (13)

where
f=171g(x)],

and /7 is a fractional order integral

(14a)

operator with respect to x.
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Remark 2. When the general functional
Equation (5) is linear, the recurrence
relation (9) can be simplified in the form:

{yo =/, as)
Ypu=N(y,), n=0,1,2,..

Proof. From the properties of integration
and by using equations (9), (14b), we have:
Yo =N Yo+t V1 +,)
N (yo+-+yp-1)
=17 (Votet 1+, ]
I [yo+ Y]
=1 yol+ e+ I [y 141 [y, ]
I yol= I [V ]
=1f[y,]1=N(y,), n=0,1,2, ...
The convergence of the NIM has been
proved in [31, 32]. We get the solution of
Equation (13) by employing the recurrence
relation (9) or (15).
2.3. Homotopy Perturbation Method.

In this subsection the basic ideas of the
HPM are introduced [13-16].

To achieve our goal m we consider the
following nonlinear differential equation:
L(y)+N(y)=¥(x), xeQ, (l6a)
with the boundary conditions:

B[u,d—y]=0,xel", (16b)
dx

where L is a linear operator, N is a
nonlinear operator, B is a boundary
operator, W(x) is a Known analytic

function and T" is the boundary of the
domain Q.

By the homotopy technique [13-16], He
construct a homotopy v (x, p):Qx

[0,1]— R which satisfies:
H, p)=(1-p)IL)-L(yo)]+p[L()
+N (v)-¥Y(x)]=0, (17a)
or
H@,p)=Lv)-L(yo)+prL(yo)
+p[N (v)-¥(x)]=0, (17b)
where x €Q, pe[0,1] is an impeding

parameter and y, is an initial
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approximation which satisfies the boundary
conditions. Obviously, from (17), we have
H(,0)=L(v)-L(yg), (18)
Hy,)=LW@)+N@»)-¥Y(x)=0,
The change process of p from zero to unity
is just that of v (x, p) from y( to y. In
topology, this 1is called deformation,
Ly)-L(yg)and Lv)+N @ )-Y¥(x)
are called homotopic. The basic assumption
is that the solution of Equation (17) ca be
expressed as a power series in p:

v =V +pv1+p2v2 +.... (19)
Setting p =1, the approximate solution of
Equation (16) is given by:

y=lmv =vy+v, +vy +.... (20)
p—l

The convergence of the series (20) has been
proved in [38, 39]. For the author you can
see [40-43].

2.4. The Reliable Algorithm.

Now we introduce a suitable algorithm to
handle in a realistic and efficient way the
nonlinear integro-differential equations of
fractional derivative order (1) defined in the
form:

D@y (x)+f (x)y(x)

b
w0y @ )y ™ (1) d t=g (x), 2la)

with the initial conditions:
d* y (0)
dx k

=k, k=0,1,2,...n—1; I R,

(21b)
In view of the homotopy technique, we can
construct the following homotopy:

D@y (x)+f (x)y(x)-g(x)

b
=p| ~Jw .0y P @)y ™ @)yd 1 |, (22a)

or

D@y (x)-g(x)=p[~f (x)y(x)

b
—[w .y @)y (t)d t, (22b)

a



where p €[0, 1]. The homotopy parameter

p always change from zero to unity.
In case p =0 Equation (22) becomes the

linearized equation:
D@y (x)=g(x)=f (x)y(x), or

D@y (x)=g(x), (23)
and when p =1 equation (22) turns out to
be the original nonlinear integro-differential
Equation (21). The basic assumption is that
the solution if Equation (22) can be written
as a power series in p:

Y=yo+pyi+p iy e (24)
Finally, we approximate the solution
y (x) by:
o0
y(xX)=2 v (25a)
n=0

where the n-term approximate solution is:
y(x)=yo+tyityatety,q. (25b)
The main advantage of the new
modification of the two methods, as we will
see in the next section, is that they can be
applicable simply to a wide class of linear
and nonlinear integro-differential equations
with fractional derivative order.

3. Applications.

In this section we present some
examples to illustrate the power of the
given with the considered
algorithms.
Example 3.1.

methods

Consider the following
example with @ (r)=1, m =0, n=1

and O<a <lI:

x|l
DY =——— -+ |xty(t)dt,
R {x v ()
(26a)
with the initial condition:
y(0)=0. (26b)

In view of the NIM, from (14a), we obtain:

1+
X a

4y(2+a)
Therefore, from (13) the integro-differentia
Equation (26) is equivalent to the integral

yo(x)=x%-

equation:
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+a
X

AT (2+a)

1
+I§‘[thy(t)dt].
0

y(x)=x?

1
Let N(y)=[f[jxty (t)dt } Theref-
0
ore, from (15) we can obtain easily the
following first few components of the
solution for Equation (26):

l+a
_c2__ %

Yo )= = Ty
yl(x):(3+a)F(2+a)—21x1+a
4B3+a) I (2+a)
pa ()= BEOT @)L
43+a) ' T'(2+a)
ys(x)= (3+a)1"(2+a)—1x1+a

4B3+a)T(2+a)®
and so on, in the same manner the rest of
components can be obtained.

The 6-term approximate solution for

Equation (26) is:
5
y(x)=2 ¥
i=0

,  xM@ LB+aT2+a)-1 4,
4Ar(2+a) 4(3+a)I(2+a)
N B+a)I(2+a)-1 L+
43+a)Y’T(2+a)
LGl Q2ra)-1 1
43+a)y’T(2+a)
LGl 2+a)-1 1
4B3+a)r2+a)
N (3+a)F(2+a)—1x1+a
43+’ T2 +a)®

The same results can be obtained by using

. 27)

Equation (9) instead to Equation (15).

In view of the HPM, the homotopy for
Equation (26) by equation (22), can be
constructed as:
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2-a 1
DEy (x ):%%:p[{w (1)ds }
: (28)
Substituting (24) and the initial condition
(26b) into (28) and equating terms with
identical powers of p; we obtain the
following set of fractional integro-
differential equations:
2-a
J 2%_%; Y0 (0)=0,
1
Pl DEyi=x [tyo(t)dt; y (0)=0,
0
1
PP DEya=x [ty((t)dt; y,(0)=0,
0
1
p> D% yy=x Ityz(t)dt; y3(0)=0,
0

Consequently, the first few components of
the homotopy perturbation solution for
Equation (26) are derived as follows:

5 xl+a

Yo(x)=x —m,

1 (x :(3+a)F(2+a)—21x1+a
43+a) T (2+ @)
B+a) T 2+a)-1  |11a

ya(x)= 5 7 X
43+a) ' T'(2+a)

ys(x)= B+a) I (2+a)-1 x1+a,

43+a)T(2+a)s
and so on, in the same manner the rest of
components can be obtained. The 6-term
approximate solution for Equation (26) is:

5
2 X
X = . =X B ———
y(x) _Zoy, IT(2ra)
1=

+(3+a)l"(2+a)—1x1+a
43+a)T(2+a)?

L BHralT2ra)-1 g
43+a)’T2+a)

N B+a)lF(2+a)-1 e
4B3+a)’T(2+a)

l+a

Hemeda et al., (2021)

B+a)IF2+a)-1 144
+ X
43+a)'T2+a)
L Gral2ra)-1 g
4B3+a)T(2+a)®

(29)
which is the same result obtained by the
NIM in (27).

Table 1.

x @ =025 =05 | =075 a=10 ? Exact

0.2 | 0.039956 | 0.039992 | 0.039999 | 0.0399998 0.04

0.4 | 0.159896 | 0.159978 | 0.159969 | 0.1899990 0.16

0.6 | 0.359828 | 0.359960 | 0.359992 | 0.3599980 0.36

0.8 | 0.639753 | 0.639938 | 0.349987 | 0.6399980 0.64

1.0 | 0.999674 | 0.999914 | 0.99981 | 0.9999960 1.00

Figure 1.

Table 1 and Figure 1 showing the 6-term
approximate solution for Equation (26)
obtained for different values of « by the
two methods. When « =1, the obtained
approximate  solutions are in high
agreement with those obtained from the

exact solution y (x )=x2 for Equation

(26). Of course the accuracy can be
improved by computing more of terms than
the computed sex-term.

Example 3.2. Consider the following
example with y @) (1)=1, m=1, n=2

and 1<a<2.



/2
D&y (x)=Dg cosx +x + I xty'(t)dt,
0
(30a)
with the initial conditions:
y(0)=1, y'(0)=0. (30b)

By the NIM, as the above example, we
obtain:

I+a
r2+a)’

Therefore, the integro-differential equation

Yo (x)=cosx +

(30) is equivalent to the integral equation:

l+a
X)=cosX +———
y(x) r(2+a)
/2
+1¢ szy'(t)dz .
0
/2
Let N(y)=1¢ jxty'(t)dt . Therefore,
0

from (15) we can obtain easily the
following first few components of the
solution for Equation (30).

l+a
X )=COoSX + —,
Yo (x) r(2+a)
ju 2+a x1+a
ri(x)=| -
2 F(l+a)T(3+a)
R
r2+a)’
3 /2
p’ D yy=x j tys(t)dt,
0
y3(0)=0, y3(0)=0
. 2(2+a) (1+a)x1+a
ya(x)=| = 5
2 IF(l+a)L(3+a)

2+a 4+«
[z x
(2] rl+ae)r(3+a)

5(2+a) (1+a)4x l+a
j r(+a)LG+a)
_[ T j4(2+0!) (1+a)3x1+0(
r(1+a)lG+a)

y5(x)=(

N

o |
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and so on, in the same manner the rest of
components can be obtained. The 6-term
approximate solution for Equation (30) is:

5
y(x)= z y; =cosx

i=0
+(£j5(2+a) (l+a)4xl+0!
2 Fr(+a)L(3+a)
(€2))

The same results can be obtained by using
equation (9).

By the HPM, the homotopy for Equation
(30) obtained from Equation (22) can be
constructed as:

DZ y (x)-DZ cosx —x

/2
=p[x j ty'(z)dt]. (32)
0

Substituting (24) and the initial condition
(30b) into (32) and equating the terms with
identical powers of p, we obtain the
following set of fractional integro-
differential equations:

p? D% yo=D%cosx +x,

yo(0)=1,y0(0)=0,
/2

pl:Df’ylzx J- tyg(t)dte,
0
»1(0)=0, y{(0)=0,
/2

pr D%y, =x j ty{(t)dt,
0

v2(0)=0, y{(0)=0,

Consequently, the first few components of
the homotopy perturbation solution for
Equation (30) are derived as follows:

l+a

X )=COSX +—,
Yo (x) T(2+a)
ﬁj2+a x1+a Ho

2

X
L+ (3+a) [(2+a)
j2(2+o:)

y1(x)=[

(1+a)x'*

F(l+a)L(3+a)?

yz(x)=(

NN

ju 2+a l+a
_[Ej r+a)L(3+a)’
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ju 5(2+a) (1+a)4xl+a
ys(x)=| = S
2 Fr+a)I(3+a)
_(£j4(2+0() (1+0{)3X1+a
2 F(l+a)lG+a)t

and so on, in the same manner the rest of
components can be obtained. The 6-term
approximate solution for Equation (30) is:

5
y(x )=z y; =cosx +
i=0
(HJS(ZW) (1+a)4x1+0£
2 rA+a)rG+a)

which is the same result obtained by the
NIM in (31).

(33)

Table 2.

x a=12 a=15 a=175 a =20 v
Exact

0 0.1 0.1 0.1 0.1 0.1

5 0.999883 0.997036 0.996359 0.996223 0.9961950

10 1.002350 0.989558 0.985916 0.985034 0.9848078

15 1.009620 0.979015 0.969305 0.966689 0.9659260

20 1.023160 0.966563 0.947148 0.941502 0.9396930

25 1.044200 0.953248 0.920079 0.909842 0.9063078

Figure 2.
Table 2 shows the 6-term approximate
solution for Equation (30) obtained for
different values of « by the two methods.
When « =2, the obtained approximate
solutions are in high agreement with those
obtained from the exact solution y (x )=

cosx for Equation (30). Of Course the
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accuracy can be improved by computing
more of terms than the computed six-term.

Example 3.3. Consider the following

example with @) (¢)=1, m =0, n=0
and 2<a<3:
1
D%y (x)=e" —x+szy(t)dz,(34a)
0
with the initial conditions
y(0)=y"(0)=y"(0)=1. (34b)
In this example, we obtain:

1+
X a

T(2+a)’
Therefore, the integro-differential equation
(34) is equivalent to the integral equation:

yo(x)-e

1
. +a “ J
y(x)=e _7F(2+a)+[x J.xty(t) t
0

1
Let N (y)=IY Ixty(z)dt . Therefore,
0

we can obtain the following approximate

solutions:
l+a
X X
x)=e® ———-——,
Yo (x) r2+a)
x1+a x1+a
yi(x)=- 2+ >
GB+a)T(2+a)” T'(2+a)
l+a
x
yo(x)=- 5 3
G+a)’T(2+a)
. x1+a
G+a)T(2+a)’
l+a
X
ys(x)=- 5 g
B+aYT(2+a)
. x1+a

Gt+a)'T(2+a)’
and so on. The 6-term approximate solution
for Equation (34) is:

5
y(x)=) v
i=0

I+«
x X

CGta)T2+a)

(35)

=e



The same results can be obtained by using
equation (9).
As the above Examples, the homotopy for
Equation (34) becomes:
1
DI y(x)—e* +x=p xJ.ty(t)dt
0
(36)
Also, we can obtain the following set of
fractional integro-differential equations:
p’ D% yy=e" —x,
Y0 (0)=y{(0)=y{(0)=1,
1
1. ha _
p D} yl—xjtyo(t)dt,
0
y0(0)=y{(0)=y{(0)=0,
1
p2 :DF y, =xIty1(t)dt,
0
y2(0)=y3(0)=y3(0)=0,

1
3
p :ny3=xjty2(t)dt,
0

y3(0)=y3(0)=y3(0)=0,

solving the above set of equations, we
obtain the following first few components
of the homotopy perturbation solution for
Equation (34):

1+a

X X
x)=e' ————,
Yo (x) T(2+a)

1+ 1+
x e x e

Gra)(2+a) Tra)

yi(x)=-

l+a
X

B+a)’T(2+a)

l+a
X

rG+a)T(2+a)?’

yo(x)=-

+

+a
X

B+a)PT(2+a)

l+a
X

rG+a)r+a)y

ys(x)=-
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In the same manner the rest of components
can be obtained. the 6-term approximate
solution for Equation (34) is:

5
y(x)=Y v
i=0

. x1+a

B+a)T(2+a)®
which is the same result obtained by the
NIM in (35).

=e

., (37D

Table 3.

x a =225 a =25 a =275 a=30 y

Exact
0.2 0.122140 0.122140 0.122140 0.122140 1.221403
0.4 1.491820 1.491820 1.491820 1.491820 1.497825
0.6 1.822120 1.822120 1.822120 1.822120 1.822119
0.8 2.225540 2.225540 2.225540 2.225540 2.225541
1.0 2.718280 2.718280 2.718280 2.718280 2.718282

Figure 3.

From Table 3 and Figure 3, it is clear that
the obtained 6-term approximate solutions,
for different values of «, by the two
methods are in high agreement with those

obtained from the exact solution

y (x )=e" for Equation (34).

Example 3.4. Consider the following inte-
gro-differential equation:
DYy (x)=Df (xe* )-x(e~1)
1
+jxty'(t)dt, l<a<2, (3%a)
0
with the initial conditions:

y(0)=0, y'(0)=1. (38b)
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Therefore, the integro-differential equation
(38) is equivalent to the integral equation:

~ . _(e—l)x1+a
Yo ) =x e~
_ Ha _ Ha
()= (e—1)x Jr(e 1)x

Frl+a)3+a) TI'R+a) ’

(e -)(1+a)x'*?

yo(x)=- 5
Frl+a)T(3+a)
(e —1)x '@
rd+a)fG+a)’
_ 4 l+a
ys(x):_(e D(1+a)*x

Frl+e)T3+a)
L(e=D) (1+a)xt
Fr(+a)LG+a)

as so on. The 6-term approximate solution
for Equation (38) is:
v (e-D+a)*x™®

F(l+a)F3+a)

(39)

The same results can be obtained by using
Equation (9).

Also, as above, the homotopy for Equation
(38) is:

DEy(x)-DF (xe¥ )+x (e-1)

1
=p[ley'(t)dt} (40)

0

5
y(x)=) y;=xe
i=0

In the same manner, we can obtain the
following set of equations:
0
p DI yo=Dy (xe* )-x(e-1),
yo(0)=y((0)=1,
1
1 '
P :ny1=xJZy0(t)dt,
0

y1(0)=y{(0)=0,

1
p2 :Df’yzzxjtyl'(t)dt,
0
y2(0)=y3(0)=0,
1
p3 :ny3=xjtyé(t)dt,
0
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y3(0)=y3(0)=0,

and so on. Solving the above set of
equations, we obtain the following first few
components of the homotopy perturbation
solution for Equation (38):

( e — l) X l+a

r2+a)

(e_l)xHa

C(1+a)T(3+a)

yo(x)=xe* -
+(e_1)xl+a ’
r(2+a)
(e —)(1+a)x'*?
F(l+a)[3+a)?

(e—l)xl+a
Fr(l+a)FG+a)’

yi(x)=

yo(x)=-

(e —1)(1+a)4x!t
F(l+a)L3+a)
Lle=D) (1+a)xte '
rd+e)rG+a)?

The 6-term approximate solution for
Equation (38) is:

5
y(x)=Y v
i=0

4  l+a
et _(e—l)(1+a) X (41)

r+e)F3+a)
which is the same result obtained in (39) by
the NIM.

ys(x)=-

Table 4.

x a=125 a =15 a =175 a =20 y
Exact

0.2 0.244252 0.244276 0.244280 0.244280 0.244281

0.4 0.596603 0.596726 0.596726 0.596729 0.596730

0.6 1.092960 1.093260 1.093260 1.093270 1.093271

0.8 1.779830 1.780410 1.780410 1.780430 1.780433

1.0 2.717290 2.718230 2.718230 2.718270 2.718282
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Figure 4.

From Table 4 and Figure 4, it is clear that
the obtained 6-term approximate solutions,
for different values of «, by the two
methods are in high agreement with those
obtained solution

from the exact

y (x )=xe”* for Equation (38).

Example 3.5. Consider the following
nonlinear integro-differential equation with:
qg=0, m=1, n=2and I<a<2.

a 6x3¢ 3x
Dy y(x)= m e
1
Hxey@yyiyde, @2
0
with the initial conditions:
y(0)=0, y'(0)=0. (42b)
In this example, we obtain:
3 3y I+a
Yo(x)=x"- m >
and the nonlinear integro-differential

equation (42) is equivalent to the nonlinear
integral equation:
3x l+a

_ .3
y(x)=x IT(2+a)

0

1
+I§’[J.xty(t)y'(t)dt}.

1

Let N(y)=ljxty(t)y’dt]. Therefore,
0

from (9) we can obtain the following
approximate solutions for Equation (42):
3xl+a

_ 3
Yo (x)=x IT2+a)’

Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations

yi(x)=[3x ¥ [3(5+a)+7(3+2a) -
Frl+a)(-4—-a+(5+a)I'(2+a))]]

/[49(15+13+262 )T (1+a) T(2+a),

27(5+a)?

l+a
x)=3x
y2(x) 3124

~126(20

Oa+a’)T(1+a)+588(4+a) -
B+2a0)T(1+a) +147a(4+a) -
B+2a)T(1+a) +147a(l+a) -
(4+a)(3+2a)T(1+a) -3773a -
(1+a)(4+a)T(1+a)* -686a° -
(4+a)(3+2a)T ()’ T(2+a)
+735(4+a)+735(4+a)(3+2a)
TF(l+a)’T(2+a)-4116(4+a)
B+2a)(1+a)’T(2+a)
+343(5+a)? (3+2a)’T(+a)

F(2+a)3}/[2401915+13a+2a2)2
Fr(l+a)PT(2+a)*],

and son on. By the HPM, the homotopy for
Equation (42) obtained from Equation (22)
takes the form:

6x>7% 3y
DI y(x)-———+—
T(4—-a) 7

1
=p[xjty(z)y'(t)dt]. (43)
0

Substituting (24) and the initial conditions
(42b) into (43) and equating the terms with
identical powers of p, we obtain the
following set of linear integro differential

equations of fractional derivative order:
6x> %  3x

“T4-a) 7
y0(0)=y0(0)=0,

0
p DYy

B

1
1 '
p :ny1=XJtyo(t)yo(t)dt,
0

y1(0)=y{(0)=0,
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1
p? 3ny2=xjf(y0(f)yf(f)
0
+y1(t)yo(t))dte,
y2(0)=y,(0)=0,
1
P D y3=x [t (ro()y3(t)
0
1)y (@) +y()yo(t))dt
y3(0)=y3(0)=0,

and so on. Solving the above set of
equations, we obtain the following first few
components of the homotopy perturbation
solution for Equation (42):

3x l+a

_ 3
Yo (x)=x IT2+a)’

y1 (x)=Bx"[3(G+a)+7(3+2a)
Frl+a)(-4-a+(5+a)I'(2+a))]]

49(15+13a+202 ) T(1+a)T(2+a)° 1,

Y, (x)=3x"*[4(1+a)9[3(5+a)
+73+2a) T (1+a)(-4-a+(5+a) -
r2+a)|(-5—a+73+2a0)I'2+a))

+3(—3(15+13a+2a2)a[3(5+a)
+73+2a)T(1+a)(—4—a+5(5+a)

TQ2+a))]+4(6+17a+11a*)T(2+a)
A+a)[3(5+a)+7(3+2a)T(1+a) -
Fl+a)(-4-a(5+a)L(2+a))])]

/I32(1+a)(5+a) (3+2a)’T(1+a)
r+a)tl,

and son on. The 4-term approximate
solution for equation (42), obtained by the
two methods, for different values of o are
listed in Table 5. It is clear that the
approximate solutions are in  high
agreement with those obtained from the

exact solution y (x )=x3 for Equation
(42).
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Table 5.
Metho
X d a =150 a =175 a =20 ¥ Exact
-3 -3 -3
NIM 7.96502 7.99220 7.99840
-3
0.2 8.00
-3 -3 -3
HPM 7.96500 7.99210 7.99839
-2 -2 -2
NIM 6.38021 6.39475 6.39872
-2
0.4 6.40
-2 -2 -2
HPM 6.38020 6.39474 6.39871
-1 -1 -1
NIM 2.15455 2.15840 2.15957
-1
0.6 ) ) ) 2.16
HPM 2.15453 2.15838 2.15956
-1 -1 -1
NIM 5.10881 5.11647 5.11898
-1
0.8 l 1 1 512
HPM 5.10880 5.11646 5.11897
-1 -1 -1
NIM 9.98044 9.99348 9.99800
1.0 1.00
HPM -1 -1 -1
9.98043 9.99348 9.99800

Example 3.6. Finally, consider the
following nonlinear integro-differential
equation with: ¢ =0, m =0, n=2 and
l<a<2;

a
Dy y(x)=e 4
1
Hxeyiyde, (44
0
with the initial conditions:
y(0)=1, y'(0)=1. (44b)

As above, we obtain:
(e? +1)x
AT(2+a)
also, the nonlinear integro-differential
equation (44) is equivalent to the nonlinear
integral equation:

(e 2 +1)x l+a
4T (2+a)

1
+1¢ jxtyz(t)dt

0

Vo (x=e* -

y(x)=e*

1
Let N (y ):I)f’[jxty2 (t)dt } Therefore,
0
from (9) we can obtain the following
approximate solutions for Equation (44):




2 l+a
yo(x)=e —%
(62+1)x1+a ~ (82+1)x1+a

AT(2+a)  2(3+a)T(2+a)
(62 +1)2x1+a
16(4+2a)0(2+a)’

(62 +1)2xl+a
23+a) T (2+a)
(62+1)2xl+a (82+1)x1+a .

16(4+2a)T(2+a)® 1024T(2+a)

yi(x)=

(@t
AT(2+a)

ya(x)

(e +1)
22+ayPT2+a)

256 +

~ 16(e? +1)?
22+a)? B+a)T(2+a)
128(e? +1)
2+a)B3+a)T(2+a)

D ) (TG+a)-T(3+a,-1)
Q+a)[2+a)

104(-1)* (@ +1)* (T(3+a)-T (3+a;, -1))
G+a)[2+a) ’

and so on.
By the HPM, the homotopy, for Equation
(44) takes the form:

X +(€2 +1)x
4

1

=p[szy2(t)dt]. (45)
0

As above, we can obtain the following set

of linear integro-differential equations of

fractional derivative order:

2
0 (e” +1)x
p 1D yg=e" T4

y0(0)=y4(0)=0,

DYy (x)-e

1

p' :ny1=XItyoz(t)y6(t)dt,
0
y1(0)=y{(0)=0,
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1
2 '
p eryz=xI2tyo(t)y1(t)dt,
0

y2(0)=y5(0)=0,

1

P D y3=x [t (2yo )y (1)
0
+yi@)de,
y3(0)=y3(0)=0,

and so on. Solving the above set of
equations, we obtain the following first few
components of the homotopy perturbation
solution for Equation (44).
. (e 2 +1)x l+a

AT (2+ @)

(62 +1)x1+(l ~
AT(2+a)

yo(x)=e

(82 +l)x1+a

2B+a)T(2+a)

yi(x)=

(62 +1)2x1+a
16(4+2a)T(2+a)
y2(x)=[-(1+e®)x " [(1+e?)(3+a) -
16T (3+a)+8(6+5a+a*)T(2+a)*]]
/[64(6+5a+a’)T(2+a) ],

and so on.

Table 6.
x 0.2 0.4 0.6 0.8 1.0
Y NIM 1.22139 1.49175 1.82185 2.22491 2.71705
Y HPM 1.22135 1.49171 1.82177 2.22480 2.71692
¥ 1.22140 1.49182 1.82212 2.22556 2.71828
Exact

In Table 6, the 4-term approximate solution,
obtained by the two methods, when « =2

with the corresponding exact solution

y (x)=e* for equation (44). It is clear

that the two
agreement.

solutions are in high
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4. Conclusion.

In this work, the NIM and HPM with a
reliable algorithms employed to solve linear
and nonlinear integro-differential equations
with fractional derivative order. The
modified algorithms make the steps of
solution are simple. The obtained results by
the two methods, for different values of « ;
are in high agreement with those obtained
from the corresponding exact solutions.
This exhibit that these methods needs much
less computations and they have a very fast
convergency when applied to solve this
type of equations.
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