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In this work, we implement relatively new analytical 

techniques, the new iterative method (NIM) and homotopy 

perturbation method (HPM), for solving linear and nonlinear 

integro-differential equations of fractional derivative order. The 

fractional derivatives are described in the Caputo sense. The two 

methods in applied mathematics can be used as alternative methods 

for obtaining analytical and approximate solutions for different 

types of fractional differential and integro-differential equations. In 

these schemes, the solution takes the form of a convergent series 

with easily computable components. Numerical results show that 

the two approaches are easy to implement and accurate when 

applied to integro-differential equations of fractional derivative 

order. 
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1. Introduction 

   In the past decades, both 
mathematicians and physicists have devoted 
considerable effort to fined robust and 
stable numerical and analytical methods for 

solving fractional differential and integro-
differential equations of physical interest. 
Numerical and analytical methods have 
included finite difference method [1-3], 
Adomian decomposition method [4-8], 
variational iteration method [9-12], 
homotopy perturbation method (HPM) [13-
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16], generalized differential transform 
method [17-20], homotopy analysis method 
[21-23] and new iterative method (NIM) 
[24-30, 44, 45]. Among them, the HPM and 
the NIM [13-16, 24-30, 44, 45] provides an 
effective procedure for explicit and 
numerical solutions of a wide and general 
class of differential and integro-differential 
systems representing real physical 
problems. In both methods, the validity of 
them is independent of whether or not there 
exist small parameters in the considered 
equation. 

   The motivation of this work is to extend 
the analysis of both the NIM pro- posed by 
Gejji-Jafari [24-32] and the HPM proposed 
by He [13-16] with a reliable algorithms to 
solve linear and nonlinear integro-
differential equations with fractional 
derivative order defined as follows: 
nonlinear integro-differential equations 
with fractional derivative order defined as 
follows: 

( ) ( ) ( ) ( )y x f x y x    

( ) ( )( , ) ( ) ( ) ( )
b

q m

a

w x t y t y t d t g x    (1a) 

, 0, 1, 2, ..., 1;
k

k kk

d y
h k n h R

d x
      (1b) 

where , 0, 1, 2, ..., 1kh k n   are real 

constants, q, m, n are integers and   is 
fraction with 1q m n n     . In (1) 

the functions f, g and w are given solution. 
The obtained results shown that these 
methods with the modification algorithms 
are very simple and effective. 
   For considering some properties of the 

fractional order differential operator, con-

sider the nonlinear differential equation: 

( 1)( ) ( , , ..., ) , 0n
xD y x f y y y x    

                 (2) 
where 1 ,n n f    is a nonlinear 

function and D  denotes the differential 
operator in the sense of Caputo [33], 
defined by: 

( ) ( )n n
x x xD f x I D f x  .              (3) 

Here xD  is the usual differential operator 

of order   and xI   is the Riemann-Liouvil 

integral operator of order 0  , defined 
by: 

1

0

1
( ) ( ) ( ) ) ,

( )

x

xI f x x f d   


 
 

     0x  .               (4) 

   Properties of the operators xI   and xD  

can be found in [34, 35], we mention only 

the following, for , 1f C    , 0   

and 1v   : 

1- ( ) ( )x x xI I f x I f x     

( )x xI I f x  , 

2- 
( 1)

( 1 )
v v

x
v

I x x
v

 


 

  

, 

3- 
( 1)

( 1 )
v v

x
v

D x x
v

 


 

  

. 

2. Analysis of the Methods. 
   In this section, we discuss the analysis 
and the algorithms of the two considered 
methods. 

2.1. New Iterative Method. 
   Consider the following general functional 
equation [24-32]: 

( ) ( ) ( ( ) )y x f x N y x  ,  (5) 

where N is a nonlinear operator from a 
Banach space B B  and f is a known 
function (element) of the Banach space B. 
We are looking for a solution y of Equation 
(5) having the series form: 

0

( ) ( )i
i

y x y x



  .   (6) 

The nonlinear operator N can be 
decomposed as: 

0
0

( )i
i

N y N y
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1

1 0 0

i i

i i
i j j

N y N y
 

  

                  
   . (7) 

From Equations (6) and (7), Equation (5) is 
equivalent to: 

0
0

( )i
i

y f N y



   

1

1 0 0

i i

i i
i j j

N y N y
 

  

                  
   . (8) 

We define the recurrence relation: 

0

1 0

1 0 1

0 1 1

,

( ) ,

( ... )

( ... ) ,

1, 2 , ....

n n

n

y f

y N y

y N y y y

N y y y

n






     
   
 

 (9) 

Then  

1 2 1 0 1( ... ) ( ... ),n ny y y N y y y        

1, 2, ...n  ,                       (10) 

and  

0
i

i

y y



  .              (11) 

Then n-term approximate solution of 
Equations (5) and (6) is given by 

1

0

( )
n

i
i

y x y



  . 

Remark 1. If N is a contraction, i.e., 
|| ( ) ( ) || || ||,N x N y k x y    0 1k  , 

then: 
1

1 0|| || || || ,n
ny k y
   0, 1, 2, ...n  . 

Proof. From Equation (9), we have: 

0y f , 

1 0 0|| || || ( ) || || ||y N y k y  , 

2 0 1|| || || ( )y N y y   

2
0 1 0( ) || || || || ||N y k y k y   , 

3 0 1 2|| || || ( )y N y y y    

0 1 2( ) || || ||N y y k y    

3
0|| ||k y , 

       

1 0|| || || ( ... )n ny N y y     

0 1

1
0

( ... ) ||

|| || || || ,

n

n
n

N y y

k y k y




  

 
 

0 , 1, ...,n   and the series 
0

i
i

y



  

absolutely and uniformly converges to a 
solution of Equation (5) [36], which is 
unique in vies of the Banach fixed point 
theorem [37]. 

2.2. The Reliable Algorithm. 

   After the above presentation of the new 
iterative method, we present a reliable 
approach of this method. This new 
modification can be implemented for 
integer order and fractional order linear and 
nonlinear integro-differential equations. To 
illustrate the basic idea of the new 
algorithm, we consider the nonlinear 
integro-differential equation with fractional 
derivative order (1) defined as follows: 

( ) ( ) ( )xD y x f x y x   

( ) ( )( , ) ( ) ( ) ( )
b

q m

a

w x t y t y t d t g x   (12a) 

with the initial conditions: 

(0)
, 0, 1, 2, ..., 1; .

k

k kk

d y
h k n h R

d x
   

              (12b) 
In view of the new iterative method, the 
above nonlinear integro-differential 
equation (12) is equivalent to the nonlinear 
integral equation: 

( ) [ ( ) ] ( ) ( )x xy x I g x I f x y x  
  


 

( ) ( )( , ) ( ) ( )
b

q m

a

w x t y t y t d t






( )f N y  ,             (13) 

where  

[ ( ) ]xf I g x ,           (14a) 

and xI   is a fractional order integral 

operator with respect to x.  
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Remark 2. When the general functional 
Equation  (5) is linear, the recurrence 
relation (9) can be simplified in the form: 

0

1

,

( ) , 0 , 1, 2 , ....n n

y f

y N y n


  

    (15) 

Proof. From the properties of integration 
and by using equations (9), (14b), we have: 

1 0 1( ... )n n ny N y y y      

0 1( ... )nN y y     

0 1[ ... ]x n nI y y y
     

   0 1[ ... ]x nI y y
    

0 1[ ] ... [ ] [ ]x x n x nI y I y I y  
     

   0 1[ ] ... [ ]x x nI y I y 
    

[ ] ( ) , 0, 1, 2, ...x n nI y N y n   . 

The convergence of the NIM has been 
proved in [31, 32]. We get the solution of 
Equation (13) by employing the recurrence 
relation (9) or (15).  

2.3. Homotopy Perturbation Method. 
   In this subsection the basic ideas of the 
HPM are introduced [13-16]. 
   To achieve our goal m we consider the 
following nonlinear differential equation: 

( ) ( ) ( ) ,L y N y x x    ,       (16a) 

with the boundary conditions: 

, 0 ,
d y

B u x
d x

 
  

 
,          (16b) 

where L is a linear operator, N is a 
nonlinear operator, B is a boundary 
operator, ( )x  is a Known analytic 

function and   is the boundary of the 
domain  . 
   By the homotopy technique [13-16], He 
construct a homotopy ( , ) :v x p   

[ 0, 1] R  which satisfies: 

0( , ) (1 )[ ( ) ( )] [ ( )H v p p L v L y p L v     

( ) ( ) ] 0N v x    ,        (17a) 

or 

0 0( , ) ( ) ( ) ( )H v p L v L y p L y    

[ ( ) ( )] 0p N v x   ,     (17b) 

where , [ 0, 1]x p   is an impeding 

parameter and 0y  is an initial 

approximation which satisfies the boundary 
conditions. Obviously, from (17), we have 

0( , 0) ( ) ( ) ,

( , 1) ( ) ( ) ( ) 0,

H v L v L y

H v L v N v x

 

   
. (18) 

The change process of p from zero to unity 

is just that of ( , )v x p  from 0y  to y. In 

topology, this is called deformation, 

0( ) ( )L v L y  and ( ) ( ) ( )L v N v x   

are called homotopic. The basic assumption 
is that the solution of Equation (17) ca be 
expressed as a power series in p: 

2
0 1 2 ...v v pv p v     .            (19) 

Setting 1p  , the approximate solution of 

Equation (16) is given by: 

0 1 2
1

lim ...
p

y v v v v


      .            (20) 

The convergence of the series (20) has been 
proved in [38, 39]. For the author you can 
see [40-43]. 

2.4. The Reliable Algorithm. 
   Now we introduce a suitable algorithm to  
handle in a realistic and efficient way the 
nonlinear integro-differential equations of 
fractional derivative order (1) defined in the 
form: 

( ) ( ) ( ) ( )D y x f x y x   

( ) ( )( , ) ( ) ( ) ( )
b

q m

a

w x t y t y t d t g x  , (21a) 

with the initial conditions: 

(0)
, 0, 1, 2, ..., 1;

k

k kk

d y
h k n h R

d x
    , 

             (21b) 
In view of the homotopy technique, we can 
construct the following homotopy: 

( ) ( ) ( ) ( ) ( )D y x f x y x g x    

( ) ( )( , ) ( ) ( )
b

q m

a

p w x t y t y t d t
 
  
  
 , (22a) 

or  

( ) ( ) ( ) ( ) ( )D y x g x p f x y x     

( ) ( )( , ) ( ) ( )
b

q m

a

w x t y t y t d t ,    (22b) 
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where [ 0, 1]p  . The homotopy parameter 

p always change from zero to unity. 
In case 0p   Equation (22) becomes the 

linearized equation: 
( ) ( ) ( ) ( ) ( )D y x g x f x y x   ,   or  

( ) ( ) ( )D y x g x  ,             (23) 

and when 1p   equation (22) turns out to 

be the original nonlinear integro-differential 
Equation (21). The basic assumption is that 
the solution if Equation (22)  can be written 
as a power series in p: 

2
0 1 2 ...y y p y p y     .            (24) 

Finally, we approximate the solution 
( )y x  by: 

0

( ) n
n

y x y



  ,           (25a) 

where the n-term approximate solution is: 

0 1 2 1( ) ... ny x y y y y      .     (25b) 

The main advantage of the new 
modification of the two methods, as we will 
see in the next section, is that they can be 
applicable simply to a wide class of linear 
and nonlinear integro-differential equations 
with fractional derivative order. 

3. Applications. 
 In this section we present some 
examples to illustrate the power of the 
given methods with the considered 
algorithms. 
Example 3.1. Consider the following 

example with ( ) ( ) 1, 0 , 1qy t m n    

and 0 1  : 
12

0

2
( ) ( )

(3 ) 4x
x x

D y x x t y t d t






  
   ,

             (26a) 
with the initial condition: 

( 0 ) 0y  .            (26b) 

In view of the NIM, from (14a), we obtain: 
1

2
0 ( )

4 ( 2 )

x
y x x



 


 


. 

Therefore, from (13) the integro-differentia 
Equation (26) is equivalent to the integral 
equation: 

1
2( )

4 ( 2 )

x
y x x






 

 
 

1

0

( )xI x t y t d t  
 
  
 . 

Let 
1

0

( ) ( )xN y I x t y t d t  
 
  
 . Theref-

ore, from (15) we can obtain easily the 
following first few components of the 
solution for Equation (26): 

1
2

0 ( )
4 ( 2 )

x
y x x






 

 
, 

1
1 2

(3 ) ( 2 ) 1
( )

4 (3 ) ( 2 )
y x x  

 
   


  

, 

1
2 2 3

(3 ) ( 2 ) 1
( )

4 (3 ) ( 2 )
y x x  

 
   


  

, 

     

1
5 5 6

(3 ) ( 2 ) 1
( )

4 (3 ) ( 2 )
y x x  

 
   


  

, 

and so on, in the same manner the rest of 
components can be obtained.  
The 6-term approximate solution for 
Equation (26) is: 

5

0

( ) i
i

y x y


   

1
2 1

2

(3 ) (2 ) 1

4 (2 ) 4(3 ) (2 )

x
x x


 

  


   

  
    

 

1
2 3

(3 ) ( 2 ) 1

4( 3 ) ( 2 )
x  

 
   


  

 

1
3 4

(3 ) ( 2 ) 1

4( 3 ) ( 2 )
x  

 
   


  

 

1
4 5

(3 ) ( 2 ) 1

4( 3 ) ( 2 )
x  

 
   


  

 

1
5 6

(3 ) ( 2 ) 1

4(3 ) (2 )
x  

 
   


  

.  (27) 

The same results can be obtained by using 
Equation (9) instead to Equation (15).  
In view of the HPM, the homotopy for 
Equation (26) by equation (22), can be 
constructed as: 



 

54 Hemeda et al., (2021) 

12

0

2
( ) ( )

(3 ) 4x
x x

D y x p t y t d t





  
   

    


.               (28) 
Substituting (24) and the initial condition 
(26b) into (28) and equating terms with  
identical powers of p; we obtain the 
following set of fractional integro-
differential equations: 

2
0

0 0
2

: ; ( 0 ) 0
( 3 ) 4x
x x

p D y y






  
 

, 

1
1

1 0 1
0

: ( ) ; ( 0) 0xp D y x t y t d t y   , 

1
2

2 1 2
0

: ( ) ; (0) 0xp D y x t y t d t y   , 

1
3

3 2 3
0

: ( ) ; (0) 0xp D y x t y t d t y   , 

    
Consequently, the first few components of 
the homotopy perturbation solution for 
Equation (26) are derived as follows: 

1
2

0 ( )
4 ( 2 )

x
y x x






 

 
, 

1
1 2

(3 ) ( 2 ) 1
( )

4 (3 ) ( 2 )
y x x  

 
   


  

, 

1
2 2 3

(3 ) ( 2 ) 1
( )

4 (3 ) ( 2 )
y x x  

 
   


  

, 

         

1
5 5 6

(3 ) ( 2 ) 1
( )

4 ( 3 ) ( 2 )
y x x  

 
   


  

, 

and so on, in the same manner the rest of 
components can be obtained. The 6-term 
approximate solution for Equation (26) is: 

5

0

( ) i
i

y x y


 
1

2

4 ( 2 )

x
x






 

 
 

 1
2

(3 ) ( 2 ) 1

4 (3 ) ( 2 )
x  

 
   


  

 

 

1
2 3

1
3 4

(3 ) ( 2 ) 1

4 (3 ) ( 2 )

(3 ) ( 2 ) 1

4 (3 ) ( 2 )

x

x





 

 
 

 





   


  
   


  

 

 1
4 5

(3 ) ( 2 ) 1

4 (3 ) ( 2 )
x  

 
   


  

 

 1
5 6

(3 ) ( 2 ) 1

4 (3 ) ( 2 )
x  

 
   


  

,          

           (29) 
which is the same result obtained by the 
NIM in (27). 

Table 1. 

x 0.25   0.50   0.75   1.0   Exact
y  

0.2 0.039956 0.039992 0.039999 0.0399998 0.04 

0.4 0.159896 0.159978 0.159969 0.1899990 0.16 

0.6 0.359828 0.359960 0.359992 0.3599980 0.36 

0.8 0.639753 0.639938 0.349987 0.6399980 0.64 

1.0 0.999674 0.999914 0.99981 0.9999960 1.00 
 

 
Figure 1. 

   Table 1 and Figure 1 showing the 6-term 
approximate solution for Equation (26) 
obtained for different values of   by the 
two methods. When 1  , the obtained 
approximate solutions are in high 
agreement with those obtained from the 

exact solution 2( )y x x  for Equation 

(26). Of course the accuracy can be 
improved by computing more of terms than 
the computed sex-term. 

Example 3.2. Consider the following 

example with ( ) ( ) 1, 1qy t m  , 2n   

and 1 2  . 

x 

y (x) 
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/2

0

( ) cos ( )x xD y x D x x x t y t d t


      , 

              (30a) 
with the initial conditions: 

( 0 ) 1, ( 0 ) 0y y   .          (30b) 

By the NIM, as the above example, we 
obtain: 

1

0 ( ) cos
( 2 )

x
y x x






 

 
. 

Therefore, the integro-differential equation 
(30) is equivalent to the integral equation: 

1
( ) cos

( 2 )

x
y x x






 

 
 

/2

0

( )xI x t y t d t


  
 

  
 . 

Let 
/2

0

( ) ( )xN y I x t y t d t


  
 

  
 . Therefore, 

from (15) we can obtain easily the 
following first few components of the 
solution for Equation (30). 

1

0 ( ) cos
( 2 )

x
y x x






 

 
, 

2 1

1 ( )
2 (1 ) (3 )

x
y x

 
 

         
 

1

( 2 )

x 





 

, 

/2
3

3 2
0

: ( ) ,xp D y x t y t d t


    

           3 3( 0 ) 0 , ( 0 ) 0y y    

  
2(2 ) 1

2 2

(1 )
( )

2 (1 ) (3 )

x
y x

 

 

    
     

 

2 1

2 (1 ) (3 )

x 
 

        
 

          
5(2 ) 4 1

5 5

(1 )
( )

2 (1 ) (3 )

x
y x

 

 

    
     

 

4(2 ) 3 1

4

(1 )
,

2 (1 ) (3 )

x 

 

   
     

 

and so on, in the same manner the rest of 
components can be obtained. The 6-term 
approximate solution for Equation (30) is: 

5

0

( ) cosi
i

y x y x


   

5(2 ) 4 1

5

(1 )

2 (1 ) (3 )

x 

 

    
     

.

               (31) 
The same results can be obtained by using 
equation (9). 
By the HPM, the homotopy for Equation 
(30) obtained from Equation (22) can be 
constructed as: 

( ) cosx xD y x D x x    

/2

0

( )p x t y t d t
 

 
  

 .            (32) 

Substituting (24) and the initial condition 
(30b) into (32) and equating the terms with 
identical powers of p, we obtain the 
following set of fractional integro-
differential equations: 

0
0: cos ,x xp D y D x x    

  0 0( 0 ) 1, ( 0 ) 0y y   , 

/2
1

1 0
0

: ( ) ,xp D y x t y t d t


    

1 1( 0 ) 0, ( 0 ) 0y y   , 

/2
2

2 1
0

: ( ) ,xp D y x t y t d t


    

  2 1( 0 ) 0 , ( 0 ) 0y y   , 

   
Consequently, the first few components of 
the homotopy perturbation solution for 
Equation (30) are derived as follows: 

1

0 ( ) cos
( 2 )

x
y x x






 

 
, 

2 1 1

1 ( ) ,
2 (1 ) (3 ) (2 )

x x
y x

  
  

            
 

2(2 ) 1

2 2

(1 )
( )

2 (1 ) (3 )

x
y x

 

 

    
     

 

   
2 1

2 (1 ) (3 )

x 
 

        
, 
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5(2 ) 4 1

5 5

(1 )
( )

2 (1 ) (3 )

x
y x

 

 

    
     

 

4(2 ) 3 1

4

(1 )

2 (1 ) (3 )

x 

 

   
     

, 

and so on, in the same manner the rest of 
components can be obtained. The 6-term 
approximate solution for Equation (30) is: 

5

0

( ) i
i

y x y


 cos x   

5(2 ) 4 1

5

(1 )

2 (1 ) (3 )

x 

 

  
 
     

,       (33) 

which is the same result obtained by the 
NIM in (31). 

 
Table 2. 

x 1.25   1.50   1.75   2.0   
Exact

y  

0 0.1 0.1 0.1 0.1 0.1 

5 0.999883 0.997036 0.996359 0.996223 0.9961950 

10 1.002350 0.989558 0.985916 0.985034 0.9848078 

15 1.009620 0.979015 0.969305 0.966689 0.9659260 

20 1.023160 0.966563 0.947148 0.941502 0.9396930 

25 1.044200 0.953248 0.920079 0.909842 0.9063078 

 

Figure 2. 
Table 2 shows the 6-term approximate 
solution for Equation (30) obtained for 
different values of   by the two methods. 
When 2  , the obtained approximate 
solutions are in high agreement with those 
obtained from the exact solution ( )y x   

cos x  for Equation (30). Of Course the 

accuracy can be improved by computing 
more of terms than the computed six-term. 

Example 3.3.  Consider the following 

example with ( ) ( ) 1, 0 ,qy t m   0n   

and 2 3  : 
1

0

( ) ( )x
xD y x e x x t y t d t     , (34a) 

with the initial conditions  

( 0 ) ( 0 ) ( 0 ) 1y y y    .          (34b) 

In this example, we obtain: 
1

0 ( )
( 2 )

x x
y x e






 

 
. 

Therefore, the integro-differential equation 
(34) is equivalent to the integral equation: 

11

0

( ) ( )
(2 )

x
x

x
y x e I x t y t d t






  
   

    
 . 

Let 
1

0

( ) ( )xN y I x t y t d t
 
 
  
 . Therefore, 

we can obtain the following approximate 
solutions: 

1

0 ( )
( 2 )

x x
y x e






 

 
, 

1 1

1 2
( )

( 2 )(3 ) ( 2 )

x x
y x

 

 

 
  

   
, 

1

2 2 3
( )

(3 ) ( 2 )

x
y x



 


 

  
 

1

2(3 ) ( 2 )

x 

 




  
, 

       
1

5 5 6
( )

(3 ) ( 2 )

x
y x



 


 

  
 

1

4 5(3 ) ( 2 )

x 

 




  
, 

and so on. The 6-term approximate solution 
for Equation (34) is: 

5

0

( ) i
i

y x y


  

 
1

5 6(3 ) ( 2 )

x x
e



 


 

  
.     (35) 
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The same results can be obtained by using 
equation (9). 
   As the above Examples, the homotopy for 
Equation (34) becomes: 

1

0

( ) ( )x
xD y x e x p x t y t d t

 
   
  
 .

               (36) 
Also, we can obtain the following set of 
fractional integro-differential equations: 

0
0: ,x

xp D y e x    

         0 1 1( 0 ) ( 0 ) ( 0 ) 1y y y    , 

1
1

1 0
0

: ( ) ,xp D y x t y t d t    

         0 1 1( 0 ) ( 0 ) ( 0 ) 0y y y    , 

1
2

2 1
0

: ( ) ,xp D y x t y t d t    

2 2 2(0) (0) (0) 0y y y    , 

1
3

3 2
0

: ( ) ,xp D y x t y t d t    

3 3 3( 0 ) ( 0 ) ( 0 ) 0y y y    , 

     
solving the above set of equations, we 
obtain the following first few components 
of the homotopy perturbation solution for 
Equation (34): 

1

0 ( )
( 2 )

x x
y x e






 

 
, 

1 1

1 2
( )

( 2 )(3 ) ( 2 )

x x
y x

 

 

 
  

   
, 

1

2 2 3
( )

(3 ) ( 2 )

x
y x



 


 

  
 

    
1

2(3 ) ( 2 )

x 

 



   

, 

      
1

5 5 6
( )

(3 ) ( 2 )

x
y x



 


 

  
 

   
1

4 5(3 ) ( 2 )

x 

 



   

. 

In the same manner the rest of components 
can be obtained. the 6-term approximate 
solution for Equation (34) is: 

5

0

( ) i
i

y x y


  

1

5 6(3 ) ( 2 )

x x
e



 


 

  
,      (37) 

which is the same result obtained by the 
NIM in (35). 

Table 3. 

x 2.25   2.50   2.75   3.0   
Exacty  

0.2 0.122140 0.122140 0.122140 0.122140 1.221403 

0.4 1.491820 1.491820 1.491820 1.491820 1.497825 

0.6 1.822120 1.822120 1.822120 1.822120 1.822119 

0.8 2.225540 2.225540 2.225540 2.225540 2.225541 

1.0 2.718280 2.718280 2.718280 2.718280 2.718282 

 

Figure 3. 

   From Table 3 and Figure 3, it is clear that 
the obtained 6-term approximate solutions, 
for different values of  , by the two 
methods are in high agreement with those 
obtained from the exact solution 

( ) xy x e  for Equation (34). 

Example 3.4. Consider the following inte-
gro-differential equation: 

( ) ( ) ( 1)x
x xD y x D x e x e     

1

0

( ) , 1 2x t y t d t    ,   (38a) 

with the initial conditions: 

( 0 ) 0 , ( 0 ) 1y y   .          (38b) 
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Therefore, the integro-differential equation 
(38) is equivalent to the integral equation: 

1

0
( 1)

( )
( 2 )

x e x
y x x e






 

 
, 

1 1

1
( 1) ( 1)

( )
(1 ) (3 ) (2 )

e x e x
y x

 

  

  
 

     
, 

1

2 2

( 1) (1 )
( )

(1 ) (3 )

e x
y x



 

 
 

   
 

    
1( 1)

(1 ) (3 )

e x 

 



   

, 

        
4 1

5 5

( 1) (1 )
( )

(1 ) (3 )

e x
y x



 

 
 

   
 

    
3 1

4

( 1) (1 )

(1 ) (3 )

e x 

 

 

   

, 

as so on. The 6-term approximate solution 
for Equation (38) is: 

5 4 1

5
0

( 1)(1 )
( )

(1 ) (3 )

x
i

i

e x
y x y x e



 





 
  

   
 . 

               (39) 
The same results can be obtained by using 
Equation (9). 
Also, as above, the homotopy for Equation 
(38) is: 

( ) ( ) ( 1)x
x xD y x D x e x e     

1

0

( )p x t y t d t
 
 
  
 .             (40) 

In the same manner, we can obtain the 
following set of equations: 

0
0: ( ) ( 1) ,x

x xp D y D x e x e     

0 0( 0 ) ( 0) 1y y   , 

1
1

1 0
0

: ( ) ,xp D y x t y t d t    

  1 1( 0 ) ( 0 ) 0y y   , 
1

2
2 1

0

: ( ) ,xp D y x t y t d t    

2 2( 0 ) ( 0 ) 0y y   , 

1
3

3 2
0

: ( ) ,xp D y x t y t d t    

3 3( 0 ) ( 0 ) 0y y   , 

     
and so on. Solving the above set of 
equations, we obtain the following first few 
components of the homotopy perturbation 
solution for Equation (38): 

1

0
( 1)

( )
( 2 )

x e x
y x x e






 

 
, 

1 1

1
( 1) ( 1)

( )
(1 ) (3 ) (2 )

e x e x
y x

 

  

  
 

     
, 

1

2 2

( 1) (1 )
( )

(1 ) (3 )

e x
y x



 

 
 

   
 

    
1( 1)

(1 ) (3 )

e x 

 



   

, 

        
4 1

5 5

( 1) (1 )
( )

(1 ) (3 )

e x
y x



 

 
 

   
 

    
3 1

4

( 1) (1 )

(1 ) (3 )

e x 

 

 

   

. 

The 6-term approximate solution for 
Equation (38) is: 

5

0

( ) i
i

y x y


  

4 1

5

( 1) (1 )

(1 ) ( 3 )

x e x
x e



 

 
 

   
, (41) 

which is the same result obtained in (39) by 
the NIM. 

Table 4. 

x 1.25   1.50   1.75   2.0   
Exacty  

0.2 0.244252 0.244276 0.244280 0.244280 0.244281 

0.4 0.596603 0.596726 0.596726 0.596729 0.596730 

0.6 1.092960 1.093260 1.093260 1.093270 1.093271 

0.8 1.779830 1.780410 1.780410 1.780430 1.780433 

1.0 2.717290 2.718230 2.718230 2.718270 2.718282 
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Figure 4. 

From Table 4 and Figure 4, it is clear that 
the obtained 6-term approximate solutions, 
for different values of  , by the two 
methods are in high agreement with those 
obtained from the exact solution 

( ) xy x x e  for Equation (38). 

Example 3.5. Consider the following 
nonlinear integro-differential equation with: 

0, 1, 2q m n    and 1 2  . 

36 3
( )

( 4 ) 7x
x x

D y x






 
 

 

        
1

0

( ) ( )x t y t y t d t ,  (42a) 

with the initial conditions: 

( 0 ) 0 , ( 0 ) 0y y   .          (42b) 

In this example, we obtain: 
1

3
0

3
( )

7 ( 2 )

x
y x x






 

 
, 

and the nonlinear integro-differential 
equation (42) is equivalent to the nonlinear 
integral equation: 

1
3 3

( )
7 ( 2 )

x
y x x








 
 

  
1

0

( ) ( )xI x t y t y t d t
 
 
  
 . 

Let 
1

0

( ) ( )N y x t y t y d t
 
 
  
 . Therefore, 

from (9) we can obtain the following 
approximate solutions for Equation (42): 

1
3

0
3

( )
7 ( 2 )

x
y x x






 

 
, 

 

1
1 ( ) [ 3 [3( 5 ) 7 (3 2 )y x x         

(1 )( 4 (5 ) (2 )) ]]            

2 2/[49(15 13 2 ) (1 ) (2 )         , 

2
1

2
27 (5 )

( ) 3 126( 20
3 2

y x x  


  
 


 

29 ) (1 ) 588( 4 )           

2( 3 2 ) (1 ) 147 ( 4 )          
2(3 2 ) (1 ) 147 (1 )          

3( 4 ) (3 2 ) (1 ) 3773          
4 5(1 ) ( 4 ) (1 ) 686          

3( 4 ) ( 3 2 ) ( ) ( 2 )         

735( 4 ) 735( 4 ) (3 2 )        

2(1 ) ( 2 ) 4116 ( 4 )         

3(3 2 ) (1 ) ( 2 )        

2 2 3343(5 ) ( 3 2 ) (1 )        

3 2 2(2 ) /[2401915 13 2 )     
 

3 4(1 ) ( 2 ) ]     , 

   
and son on. By the HPM, the homotopy for 
Equation (42) obtained from Equation (22) 
takes the form: 

36 3
( )

( 4 ) 7x
x x

D y x






 
 

 

1

0

( ) ( )p x t y t y t d t
 
 
  
 .      (43) 

Substituting (24) and the initial conditions 
(42b) into (43) and equating the terms with 
identical powers of p, we obtain the 
following set of linear integro differential 
equations of fractional derivative order: 

3
0

0
6 3

: ,
( 4 ) 7x
x x

p D y






 
 

 

0 0( 0 ) (0) 0y y   , 

1
1

1 0 0
0

: ( ) ( ) ,xp D y x t y t y t d t    

1 1( 0 ) (0) 0y y   , 
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1
2

2 0 1
0

: ( ( ) ( )xp D y x t y t y t    

1 0( ) ( ) )y t y t d t , 

2 2( 0 ) (0) 0y y   , 

1
3

3 0 2
0

: ( ( ) ( )xp D y x t y t y t    

 1 1 2 0( ) ( ) ( ) ( ))y t y t y t y t d t    

  3 3( 0 ) (0) 0y y   , 

     
and so on. Solving the above set of 
equations, we obtain the following first few 
components of the homotopy perturbation 
solution for Equation (42): 

1
3

0
3

( )
7 ( 2 )

x
y x x






 

 
, 

1
1 ( ) [3 [3( 5 ) 7 ( 3 2 )y x x         

(1 ) ( 4 (5 ) ( 2 ) ) ]]            

2 249(15 13 2 ) (1 ) (2 ) ]         , 

1
2 ( ) 3 [ 4 (1 )9[3(5 )y x x       

7(3 2 ) (1 )( 4 (5 )             
(2 ))]( 5 7(3 2 ) (2 ))            

23( 3(15 13 2 ) [ 3(5 )         

7(3 2 ) (1 )( 4 5(5 )            
2(2 ))] 4(6 17 11 ) (2 )           

(1 )[3(5 ) 7(3 2 ) (1 )           

(1 ) ( 4 ( 5 ) ( 2 ) ) ]) ]           

2 2/[1372(1 )(5 ) (3 2 ) (1 )         

4( 2 ) ]  , 

    
and son on. The 4-term approximate 
solution for equation (42), obtained by the 
two methods, for different values of   are 
listed in Table 5. It is clear that the 
approximate solutions are in high 
agreement with those obtained from the 

exact solution 3( )y x x  for Equation 

(42). 
 
 
 
 

Table 5.  

X 
Metho

d 
1.50   1.75   2.0   

Exacty  

0.2 

NIM 3
7.96502


 

3
7.99220


 

3
7.99840


 

3
8.00


 

HPM 3
7.96500


 

3
7.99210


 

3
7.99839


 

0.4 

NIM 2
6.38021


 

2
6.39475


 

2
6.39872


 

2
6.40


 

HPM 2
6.38020


 

2
6.39474


 

2
6.39871


 

0.6 

NIM 1
2.15455


 

1
2.15840


 

1
2.15957


 

1
2.16


 

HPM 1
2.15453


 

1
2.15838


 

1
2.15956


 

0.8 

NIM 1
5.10881


 

1
5.11647


 

1
5.11898


 

1
5.12


 

HPM 1
5.10880


 

1
5.11646


 

1
5.11897


 

1.0 

NIM 1
9.98044


 

1
9.99348


 

1
9.99800


 

1.00 

HPM 1
9.98043


 

1
9.99348


 

1
9.99800


 

Example 3.6. Finally, consider the 
following nonlinear integro-differential 
equation with: 0 , 0 , 2q m n    and 

1 2  ; 
2( 1)

( )
4

x
x

e x
D y x e 

   

1
2

0

( )x t y t d t ,          (44a) 

with the initial conditions: 

( 0 ) 1, ( 0 ) 1y y   .          (44b) 

As above, we obtain: 
2 1

0
( 1)

(
4 ( 2 )

x e x
y x e






 

 
, 

also, the nonlinear integro-differential 
equation (44) is equivalent to the nonlinear 
integral equation: 

2 1( 1)
( )

4 ( 2 )
x e x

y x e





 

 
 

1
2

0

( )xI x t y t d t
 
 
  
 . 

Let 
1

2

0

( ) ( )xN y I x t y t d t
 
 
  
 . Therefore, 

from (9) we can obtain the following 
approximate solutions for Equation (44): 



 

61 Comparison between New Iterative Method and Homotopy Perturbation Method for Solving Fractional Derivative Integro-Differential Equations 

2 1

0
( 1)

( )
4 ( 2 )

x e x
y x e






 

 
, 

 
2 1 2 1

1 2

( 1) ( 1)
( )

4 (2 ) 2(3 ) (2 )

e x e x
y x

 

  

  
 

    
 

2 2 1

3

( 1)

16 ( 4 2 ) ( 2 )

e x 

 




  
, 

2 1 2 2 1

2 2

( 1) ( 1)
( )

4 (2 ) 2(3 ) (2 )

e x e x
y x

 

  

  
 

    
 

2 2 1 2 1

3

( 1) ( 1)

1024 (2 )16(4 2 ) (2 )

e x e x 

 

  
  

   
 

2 3

3 6

( 1)
256

2 ( 2 ) ( 2 )

e

 

 


  
 

2 2

2 5

16 ( 1)

2 ( 2 ) ( 3 ) ( 2 )

e

  




   
 

2

4

128( 1)

( 2 ) (3 ) ( 2 )

e

  




   
 

2 2

3

64( 1) ( 1) ( (3 ) (3 , 1))

(2 ) (2 )

e  

 

      


  
 

2 2

3

1024( 1) ( 1) ( (3 ) (3 , 1))

(3 ) (2 )

e  

 

       
 

   
, 

  
and so on. 
By the HPM, the homotopy, for Equation 
(44) takes the form: 

2( 1)
( )

4
x

x
e x

D y x e 
   

1
2

0

( )p x t y t d t
 
 
  
 .            (45) 

As above, we can obtain the following set 
of linear integro-differential equations of 
fractional derivative order: 

2
0

0
( 1)

: ,
4

x
x

e x
p D y e 

   

0 0( 0 ) (0) 0y y   , 

1
1 2

1 0 0
0

: ( ) ( ) ,xp D y x t y t y t d t    

1 1( 0 ) (0) 0y y   , 

1
2

2 0 1
0

: 2 ( ) ( )xp D y x t y t y t d t   , 

2 2( 0 ) (0) 0y y   , 

 
1

3
3 0 2

0

: ( 2 ( ) ( )xp D y x t y t y t    

2
1 ( ) )y t d t , 

3 3( 0 ) (0) 0y y   , 

     
and so on. Solving the above set of 
equations, we obtain the following first few 
components of the homotopy perturbation 
solution for Equation (44). 

2 1

0
( 1)

( )
4 ( 2 )

x e x
y x e






 

 
, 

2 1 2 1

1 2

( 1) ( 1)
( )

4 (2 ) 2(3 ) (2 )

e x e x
y x

 

  

  
 

    
 

 
2 2 1

3

( 1)

16 ( 4 2 ) ( 2 )

e x 

 




  
, 

2 1 2
2 ( ) [ (1 ) [ (1 ) (3 )y x e x e        

2 216 (3 ) 8(6 5 ) (2 ) ]]           

2 5/ [ 64 ( 6 5 ) ( 2 ) ]      , 

   
and so on.  

Table 6. 

x 0.2 0.4 0.6 0.8 1.0 

NIMy  1.22139 1.49175 1.82185 2.22491 2.71705 

HPMy  1.22135 1.49171 1.82177 2.22480 2.71692 

Exacty  1.22140 1.49182 1.82212 2.22556 2.71828 

In Table 6, the 4-term approximate solution, 
obtained by the two methods, when 2   
with the corresponding exact solution 

( ) xy x e  for equation (44). It is clear 

that the two solutions are in high 
agreement. 
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4. Conclusion. 

   In this work, the NIM and HPM with a 
reliable algorithms employed to solve linear 
and nonlinear integro-differential equations 
with fractional derivative order. The 
modified algorithms make the steps of 
solution are simple. The obtained results by 
the two methods, for different values of  ; 
are in high agreement with those obtained 
from the corresponding exact solutions. 
This exhibit that these methods needs much 
less computations and they have a very fast 
convergency when applied to solve this 
type of equations. 
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  الملخص العربي :

دة     ة الجدي ة التكراري تخدام الطريق ا باس ث قمن ذا البح ي ه ل  (NIH)ف راب المتماث ة الإط ل  (HPH)وطريق لح

 Caputoوغير الخطية ذات التفاضل الكسوري وذلك باستخدام تعريف  منها الخطيةالتكاملية  -  المعادلات التفاضلية

للتفاضل الكسري وهذه الطرق تستخدم للحصول على الحلول التحليلية والتقريبية حيث يكون الحل في صورة سلسلة 

  متقاربة بمكونات يمكن حسابها بسهولة 

.  
 
 


