ANOTHER DECOMPOSITIONS OF CONTINUITY AND SOME WEAKER FORMS OF CONTINUITY VIA IDEALIZATION

A. Caksu Guler*, G. Aslim†* and T. Noiri**

*Department of Mathematics, Ege University, 35100 Izmir/TURKEY

**2949-1 Shiokita-cho, Hinagu- Yatsushiro-shi, Kumamoto-ken, 869-5142 JAPAN e-mail

: noiri@as.yatsushiro-nct.ac.jp

(Received: 1 March 2005)

ABSTRACT

The purpose of this paper is to give decompositions of continuity and some weaker forms of continuity via idealization using the concepts of αB_I -sets, αWLC_I -sets, AB_I -sets and WAB_I -sets.

1 INTRODUCTION AND PRELIMINARIES

In 1992, Jankovi'c and Hamlett [13] introduced the notion of I-open sets in ideal topological spaces. Abd El-Monsef et al. [2] further investigated I-open sets and I-continuous functions. In 1999, Dontchev [7] introduced the notion of pre-I-open sets which is weaker than that of I-open sets. Recently, Hatir and Noiri [8] have introduced the notions of B_i -sets, C_i -sets, α -I-open sets, semi-I-open sets and β -I-open sets. By using these sets, they provided decompositions of continuity. In this paper, we introduce the notions of αB_i - sets, αWLC_i -sets, AB_i -sets and WAB_i -sets to obtain decompositions of continuity and some weaker forms of continuity.

Throughout this paper, for a subset A of a space (X, τ) , the closure of A and the interior of A are denoted by CI(A) and Int(A), respectively. An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I) . The following collections form important ideals on a topological space (X, τ) : The ideal of all finite sets F, the ideal of all closed and discrete sets CD, the ideal of all nowhere dense sets N. $A^*(I) = \{x \in X \mid U \cap A \notin I \text{ for each open neighborhood } U \text{ of } x\}$ is called the local function of A with respect to I and τ [12]. When there is no chance for confusion $A^*(I)$ is denoted by A^* . Note that often X^* is a proper subset of X. The hypothesis $X = X^*$ was used by Hayashi [11], while the hypothesis $\tau \cap I = \emptyset$ was used by Samuels [18]. In fact, these two conditions are equivalent by Theorem 6.1 of [12] and so the ideal topological spaces satisfying this hypothesis are called as Hayashi-Samuels spaces.

Key words: _-I-open, strong _-I-sets, ABI -sets, WABI -sets and _WLCI -sets

AMS(1991) subject classification: 54C05, 54C10 †Corresponding author: gulhan.aslim@ege.edu.tr1

For every ideal topological space (X, τ , I), there exits a topology τ^* (I), finer than τ , generated by the base β (I, τ) = {U \ I | U $\in \tau$ and I \in I}. In general β (I, τ) is not always a topology [11]. Observe additionally that $CI^*(A) = A^* \cup A$ defines a Kuratowski closure operator for τ *(I). Now we recall some definitions and results, which are used in this paper.

Definition 1.1 A subset A of a topological space (X, τ) is called:

```
(a) an α-open set [17] if A ⊂ Int(Cl(Int(A))),
```

(b) a semi-open set [14] if A ⊂ Cl(Int(A)),

(c) a pre-open set [15] if A ⊂ Int(Cl(A)),

(d) a β-open set [1] if A ⊂ Cl(Int(Cl(A))),

(e) an αB-set [16] if A = U ∩ V, where U is α-open and Int(Cl(V)) = Int(V),

(f) an AB-set [6] if A = U ∩ V, where U is open and Int(Cl(V)) ⊂ V ⊂

Cl(Int(V)),

(g) a WAB-set [9] if A = U ∩ V, where U is open and Int(Cl(Int(V))) ⊂ $V \subset Cl(Int(CI(V))),$

(h) a LC-set [3](resp. αLC-set [16]) if A = U ∩ V, where U is open(resp.

α-open) and V is closed, (i) a D(p,ps)-set [5] if A ∩ Cl(Int(Cl(A))) = A ∩ Int(Cl(A)).

Definition 1.2 A subset A of an ideal topological space (X, τ, I) is said to be:

(a) *-perfect [11] if A = A*.

(b) α-I-open [8] if A ⊂ Int(Cl*(Int(A))),

(c) semi-I-open [8] if A ⊂ Cl*(Int(A)),

(d) pre-I-open [7] if A ⊂ Int(Cl*(A)),

(e) strongly β-I-open [10] if A ⊂ Cl*(Int(Cl*(A))),

(f) an A_I-set [4] if A = U ∩ V, where U is open and Cl*(Int(V)) = V,

(g) a B_I-set (resp. an αB_I-set) [8] if A = U ∩ V, where U is open (resp. α -I-open) and $Int(Cl^*(V)) = Int(V)$,

(h) a C_I-set [8] if A = U ∩ V, where U is open and Int(Cl*(Int(V))) = Int(V),

(i) a WLC_I-set (resp. αWLC_I-set) [4] if A = U ∩ V, where U is open (resp. α -I-open) and $Cl^*(V) = V$.

2 Decomposition of some weaker forms of continuity

Definition 2.1 A subset A of an ideal topological space (X, τ, I) is called:

(a) an αB_I-set if A = U ∩ V, where U is α-I-open and Int(Cl*(V)) = Int(V),
 (b) a D(p, ps)_I-set if A ∩ Int(Cl*(A)) = A ∩ Cl(Int(Cl*(A))).

Every B_I -set is an αB_I -set but not conversely as shown by the ioliowing example.

Example 2.1 Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$ and $I = \{\emptyset, \{c\}\}$. Then $A = \{a, c\}$ is an αB_I -set but it is not a B_I -set. For, $Int(Cl^*(Int(A))) = Int(Cl^*(Int(\{a, c\}))) = Int(Cl^*(\{a\})) = Int(\{a\} \cup \{a\}^*) = Int(X) = X \supset A$ and A is α -I-open. Therefore A is an αB_I -set. On the other hand, $A \notin \tau$ and $Int(Cl^*(A)) = Int(Cl^*(\{a, c\})) = Int(X) = X \neq \{a\} = Int(A)$. Hence A is not a B_I -set.

Proposition 2.1 For any subset A of an ideal topological space X, the fol-lowingconditions are equivalent:

(a) A is semi-I-open;

(b) There exits an open set U in (X, τ, I) such that U ⊂ A ⊂ Cl*(U).

Proof.

(a) \Rightarrow (b) Let A be a semi-I-open set. Then A $\subset Cl^*(Int(A))$ and put U = Int(A). Then U is open and U \subset A $\subset Cl^*(U)$.

(b) ⇒ (a) Let U ⊂ A ⊂ Cl*(U) for an open set U. This implies Cl*(Int(A)) = Cl*(U). So A ⊂ Cl*(Int(A)).

Proposition 2.2 Let (X, τ, I) be an ideal topological space and let $A \subset (X, \tau, I)$. Then, A is semi-I-open if and only if $A = U \cap V$, where $U = Cl^*(Int(U))$ and $Cl^*(Int(V)) = X$.

Proof.

Necessity. Let A be semi-I-open. By Proposition 2.1, $U \subset A \subset Cl^*(U)$ for some $U \in \tau$. Note that $Cl^*(U) = Cl^*(A)$. We write $A = Cl^*(U) \setminus (Cl^*(U) \setminus Cl^*(U))$

 $\overrightarrow{A)} = \overrightarrow{Cl}^*(U) \cap (X \setminus (Cl^*(U) \setminus A))$. Then, $U = Int(U) \subset Int(Cl^*(U)) \subset Cl^*(U)$. Therefore, $Cl^*(U) = Cl^*(Int(Cl^*(U)))$. Besides, $Cl^*(Int(X \setminus (Cl^*(U) \setminus A))) = Cl^*(X \setminus Cl(Cl^*(U) \setminus A)) \supset Cl^*(X \setminus Cl(Cl^*(U) \setminus U)) = Cl^*(X \setminus (Cl^*(U) \setminus U)) = Cl^*(Int(X \setminus (Cl^*(U) \setminus A))) = X$. Then, $A = U \cap V$ where $U = Cl^*(Int(U))$ and $Cl^*(Int(V)) = X$. Sufficiency. Assume that $A = U \cap V$ where $U = Cl^*(Int(U))$ and $Cl^*(Int(V)) = X$. We choose $G \in \tau$ such that $U = Cl^*(G)$. We put $H = G \cap Int(V)$. Then $H \in \tau$ with $H \subset A$. Finally, $Cl^*(H) = Cl^*(G \cap Int(V)) = Cl^*(G)$. Therefore $H \subset A \subset Cl^*(H)$ and A is semi-I-open.

Theorem 2.1 A subset A is semi-l-open in an ideal topological space if and only if it is strong β -l-open and an αWLC_I -set.

Proof.

Necessity. Let A be semi-I-open. By Proposition of [8], A is strong- β -I-open. By Proposition 2.2, $A = U \cap V$ where $U = Cl^*(Int(U))$ and $Cl^*(Int(V)) = X$. Since $Int(Cl^*(Int(V))) = X \supset V$, V is α -I-open. Besides, $Cl^*(U) = Cl^*(Int(U)) = U$. So A is an $\alpha W L C_I$ -set. Sufficiency. Let A be strong β -I-open and an $\alpha W L C_I$ -set. Then $A = U \cap V$, where U is α -I-open and $Cl^*(V) = V$. By the definition of strong β -I-openness, we have $A \subset Cl^*(Int(Cl^*(A)))$. Then $A \subset U \cap Cl^*(Int(Cl^*(A))) \subset U \cap Cl^*(Int(Cl^*(A))) = U \cap Cl^*(Int(Cl^*(A)))$, where U is α -I-open and by Proposition 2.1, $Cl^*(Int(Cl^*(A)))$ is semi-I-open. Therefore by Proposition 2.3 of [4], A is semi-I-open.

Theorem 2.2 A subset A is α -I-open in an ideal topological space (X, τ, I) , if and only if it is pre-I-open and an αB_I -set.

Proof.

Necessity. It is obvious.

Suffciency. Let A be pre-I-open and an αB_I -set. Then $A = U \cap V$, where U is α -I-open and $Int(Cl^*(V)) = Int(V)$. By the definition of pre-I-openness, we have $A \subset Int(Cl^*(A))$. Then, $A \subset U \cap Int(Cl^*(U \cap V)) \subset U \cap Int(Cl^*(U)) \cap Int(Cl^*(V)) = U \cap Int(V) \subset A$. Thus, $A = U \cap Int(V)$, where U is α -I-open and Int(V) is open. We obtain A is α -I-open.

Theorem 2.3 A subset A is pre-1-open in an ideal topological space (X, τ, I) if and only if it is : β -I-open and a $D(p, ps)_I$ -set

Proof.

Necessity. It is obvious.

Sufficiency. Let A be β -I-open and a $D(p, ps)_I$ -set. By the definition of β -I-open, we have $A \subset Cl(Int(Cl^*(A)))$. Then $A = A \cap Cl(Int(Cl^*(A))) = A \cap Int(Cl^*(A)) \subset Int(Cl^*(A))$. Thus A is pre-I-open.

Definition 2.2 /A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is αB_I -continuous (resp. αWLC_I -continuous, D(p, ps)-I-continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is an αB_I -set (resp. an αWLC_I -set, a $D(p, ps)_I$ -set) of (X, τ, I) .

Theorem 2.4 Let (X, τ, I) be an ideal topological space. For a function $f: (X, \tau, I) \rightarrow (Y, \sigma)$, the following conditions are equivalent:

(a) f is semi-I-continuous;

(b) f is strong β-I-continuous and αWLC_I-continuous.

Proof.

This is an immediate consequence of Theorem 2.1.

Corollary 2.1 ([16], Corollary 3.8) Let (X, τ, I) be an ideal topological space and $I = \{\emptyset\}$. For a function $f: (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent:

(a) f is semi-continuous;

(b) f is β-continuous and αLC-continuous.

Proof.

Since $I = \{\emptyset\}$, we have $A^* = Cl(A)$ and $Cl^*(A) = A \cup A^* = Cl(A)$ for any subset A of X. Therefore A is semi-I-open (resp. strong β -I-open, an αWLC_I -set) if and only if A is semi-open (resp. β -open, an αLC -set). The proof follows from Theorem 2.4 immediately.

Theorem 2.5Let (X, τ, I) be an ideal topological space. For a function $f: (X, \tau, I) \rightarrow (Y, \sigma)$, the following conditions are equivalent:

(a) f is α-I-continuous;

(b) f is pre-I-continuous and αB_I-continuous.

Proof.

This is an immediate consequence of Theorem 2.2.

Corollary 2.2 ([16], Corollary 2.7) Let (X, τ, I) be an ideal topological space and $I = \{\emptyset\}$. For a function $f: (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent:

(a) f is α-continuous;

(b) f is pre-continuous and αB-continuous.

Proof.

Since $I = \{\emptyset\}$, we have $A^* = Cl(A)$ and $Cl^*(A) = A \cup A^* = Cl(A)$ for any subset A of X. Therefore A is α -I-open (resp. pre-I-open, an αB_I -set) if and only if A is α -open (resp. preopen, an αB -set). The proof follows from Theorem 2.5 immediately.

Theorem 2.6 Let (X, τ, I) be an ideal topological space. For a function $f:(X, \tau, I) \rightarrow (Y, \sigma)$, the following conditions are equivalent:

(a) f is pre-I-continuous;

(b) f is β-I-continuous and D(p, ps)-I-continuous.

Proof.

This is an immediate consequence of Theorem 2.3.

Corollary 2.3 ([5]) Let (X, τ, I) be an ideal topological space and $I = \{\emptyset\}$. For a function $f: (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent: (a) f is pre-continuous;

(b) f is β-continuous and D(p,ps)-continuous.

Proof.

Since $I = \{\emptyset\}$, we have $A^* = Cl(A)$ and $Cl^*(A) = A \cup A^* = Cl(A)$ for any subset A of X. Therefore A is pre-I-open (resp. β -I-open, a $D(p,ps)_I$ -set) if and only if A is pre-open (resp. β -open, a D(p,ps)-set). The proof follows from Theorem 2.6 immediately.

3 Decomposition of continuity

Definition 3.1 A subset A of an ideal topological space (X, τ, I) is called an AB_{I} -set if $A = U \cap V$, where U is open and $Int(Cl^{*}(V))$ $\subset V \subset Cl^{*}(Int(V))$.

Proposition 3.1 Let (X, τ, I) be an ideal topological space. For a subset $A \subseteq X$, the following implications hold:

$$A_I$$
-set $\Rightarrow AB_I$ -set $\Rightarrow B_I$ -set.

Proof.

The proof is obvious.

None of these implications is reversible as the following examples show:

Example 3.1 Let $X = \{a, b, c, d\}$, $\tau = \{X, \varnothing, \{b\}, \{d\}, \{b, d\}\}\}$ and $I = \{\varnothing, \{c\}\}\}$. Then $A = \{b, c\}$ is an AB_I -set, but it is not an A_I -set. Because, $Int(Cl^*(A)) = Int(Cl^*(\{b, c\})) = Int(\{b, c\} \cup \{b, c\}^*) = Int(\{a, b, c\}) = \{b\} \subset A$. Besides, $Cl^*(Int(A)) = Cl^*(Int(\{b, c\})) = Cl^*(\{b\}) = \{b\} \cup \{b\}^* = \{a, b, c\} \supset A$ and A is an AB_I -set. On the other hand, $A = \{b, c\} \not\in \tau$ and $Cl^*(Int(A)) = Cl^*(Int(\{b, c\})) = \{a, b, c\} \not= A$. Hence A is not an A_I -set.

Example 3.2 Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{a\}\}$. Then $A = \{a, b\}$ is a B_I -set, but it is not an AB_I -set. For, $Int(Cl^*(A)) = Int(Cl^*(\{a, b\})) = Int(\{a, b\} \cup \{a, b\}^*) = Int(\{a, b\}) = \{a\}$ = Int(A). So A is a B_I -set. On the other hand, $A = Cl^*(Int(A)) \notin \tau$ and $Cl^*(Int(A)) = Cl^*(Int(\{a, b\})) = Cl^*(\{a\}) = \{a\} \cup \{a\}^* = \{a\} \not\supset A$. So, A is not an AB_I -set.

Theorem 3.1 For a subset A of an ideal topological space (X, τ, I) , the following are equivalent:

- (a) A is an AB_I-set;
- (b) A is semi-I-open and a B_I-set;
- (c) A is strong β-I-open and a B_I-set.

Proof.

(a) ⇒ (b) and (b) ⇒ (c) are obvious.

(c) \Rightarrow (a) Let A be strong β -I-open and a B_I -set. Since A is a B_I -set, A = U $\cap V_0$, where U is open and $Int(Cl^*(V_0)) = Int(V_0)$. Then A \subset U \cap (A \cup $Int(Cl^*(A))) \subset$ U \cap ($V_0 \cup Int(Cl^*(V_0))) =$ U $\cap V_0 =$ A. Hence A = U \cap (A \cup $Int(Cl^*(A))$). Besides, $Cl^*(Int(A \cup Int(Cl^*(A)))) \supset Cl^*(Int(A) \cup Int(Cl^*(A))) \supset Cl^*(Int(Cl^*(A)))$. Since A is strong β -I-open, $Cl^*(Int(A \cup Int(Cl^*(A)))) \supset$ A \cup $Int(Cl^*(A))$. Furthermore, $Int(Cl^*(A \cup Int(Cl^*(A)))) =$ Int($Cl^*(A) \cup Cl^*(Int(Cl^*(A)))) \subset Int(Cl^*(A))$. Therefore $Int(Cl^*(A \cup Int(Cl^*(A)))) \subset$ A \cup $Int(Cl^*(A))$. Put V = A \cup $Int(Cl^*(A))$. Then, A = U \cap V, where U \in τ and $Int(Cl^*(V)) \subset$ V \subset $Cl^*(Int(V))$. Hence A is an AB_I -set.

The proof is obvious

Theorem 3.2 For a subset A of an ideal topological space (X, τ, I) , the following are equivalent:

- (a) A is open;
- (b) A is pre-I-open and an AB_I-set;
- (c) A is pre-I-open and a B_I-set.

Proof.

(a) ⇒ (b) and (b)⇒(c) are obvious by Proposition 3.1.

(c)⇒ (a) This follows from Proposition 3.3 in [8].

Definition 3.2 A subset A of an ideal topological space (X, τ, I) is called a WAB_I -set if $A = U \cap V$, where U is open and $Int(Cl^*(Int(V))) \subset V \subset Cl^*(Int(Cl^*(V)))$.

Every AB_I -set is a WAB_I -set but not conversely as shown by the following example.

Example 3.3 Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{b\}, \{a, d\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{c\}\}$. Then $A = \{a, c\}$ is a WAB_I -set, but it is not an AB_I -set. $Int(Cl^*(Int(A))) = Int(Cl^*(Int(\{a, c\}))) = Int(Cl^*(\emptyset)) = \emptyset \subset A$. Besides, $Cl^*(Int(Cl^*(A))) = Cl^*(Int(Cl^*(\{a, c\}))) = Cl^*(Int(\{a, c\}) \cup \{a, c\}^*) = Cl^*(Int(\{a, c, d\})) = Cl^*(\{a, d\}) = \{a, d\} \cup \{a, d\}^* = \{a, c, d\} \supset A$. Therefore, A is a WAB_I -set. On the other hand, $A = \{a, c\} \notin \tau$ and $Cl^*(Int(A)) = Cl^*(Int(\{a, c\})) = Cl^*(\emptyset) = \emptyset \not\supset A$. So, A is not an AB_I -set.

Every WAB_I -set is strongly β -I-open and a C_I -set but not conversely as shown by the following examples.

Example 3.4 Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}\}$ and $I = \{\emptyset, \{b\}\}\}$. Then $A = \{b, c\}$ is a C_I -set, but it is not a WAB_I -set. For, $Int(Cl^*(Int(A)))$ $= Int(Cl^*(Int(\{b, c\}))) = Int(Cl^*(\{b\})) = Int(\{b\} \cup \{b\}^*) = Int(\{b\}) = \{b\} = Int(A)$. So, A is a C_I -set. On the other hand, $A = \{b, c\} \notin \tau$ and $Cl^*(Int(Cl^*(A))) = Cl^*(Int(Cl^*(\{b, c\}))) = Cl^*(Int(\{b, c\} \cup \{b, c\}^*)) = Cl^*(Int(\{b, c\})) = Cl^*(\{b\}) = \{b\} \cup \{b\}^* = \{b\} \not\supset A$. Therefore, A is not a WAB_I -set.

Example 3.5 Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{a, c\}\}$ and $I = \{\emptyset, \{b\}\}\}$. Then $A = \{a, c, d\}$ is strong β -I-open, but it is not a WAB_I -set. Because, $Cl^*(Int(Cl^*(A))) = Cl^*(Int(Cl^*(\{a, c, d\}))) = Cl^*(Int(\{a, c, d\} \cup \{a, c, d\}^*)) = Cl^*(Int(X)) = X \supset A$. Therefore, A is strong β -I-open. On the other hand, $A = \{a, c, d\} \not\in \tau$. Besides, $Int(Cl^*(Int(A))) = Int(Cl^*(Int(\{a, c, d\}))) = Int(Cl^*(\{a, c\})) = Int(\{a, c\} \cup \{a, c\}^*) = Int(X) = X \not\subset A$. So, A is not a WAB_I -set.

Theorem 3.3 For a subset A of an ideal topological space (X, τ, I) , the following are equivalent:

- (a) A is open;
- (b) A is α-I-open and a WAB_I-set; (1.2 morood I [9]) 2.2 yes long
- (c) A is α-I-open and a C_I-set.

Proof.

(a) ⇒ (b) and (b) ⇒ (c) are obvious.

(c)⇒ (a) This follows from Proposition 3.3 in [8].

Definition 3.3 A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is AB_I -continuous (resp. WAB_I -continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is an AB_I -set (resp. $aWAB_I$ -set) of (X, τ, I) .

Theorem 3.4 Let (X, τ, I) be an ideal topological space. For a function $f: (X, \tau, I) \rightarrow (Y, \sigma)$, the following conditions are equivalent: (a) f is continuous:

(b) f is pre-I-continuous and AB_I-continuous.

Proof.

This is an immediate consequence of Theorem 3.2.

Corollary 3.1 ([5], Theorem 4.4) Let (X, τ, I) be an ideal topological space and $I = \{\emptyset\}$. For a function $f: (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent:

- (a) f is continuous;
- (b) f is pre-continuous and AB-continuous.

Proof.

Since $I = \{\emptyset\}$, we have $A^* = Cl(A)$ and $Cl^*(A) = A \cup A^* = Cl(A)$ for any subset A of X. Therefore A is pre-I-open (resp. an AB_I -set) if and only if A is pre-open (resp. an AB-set). The proof follows from Theorem 3.4 immediately.

Theorem 3.5, Let (X, τ, I) be an ideal topological space. For a function f: (X, τ, I) → (Y, σ), the following conditions are equivalent:

(a) f is continuous;

(b) f is α-I-continuous and WAB_I-continuous.

Proof.

This is an immediate consequence of Theorem 3.3.

Corollary 3.2 ([9], Theorem 4.1) Let (X, τ, I) be an ideal topological space and $I = {\emptyset}$. For a function $f: (X, \tau) \rightarrow (Y, \sigma)$, the following conditions are equivalent:

(a) f is continuous;

(b) f is α-continuous and WAB-continuous.

Proof.

Since $I = {\emptyset}$, we have $A^* = Cl(A)$ and $Cl^*(A) = A \cup A^* = Cl(A)$ for any subset A of X. Therefore A is α -I-open (resp. an WAB_I -set) if and only if A is α -open (resp. an WAB-set). The proof follows from Theorem 3.5 immediately.

Conclusions 3.1 Let (X, τ, I) be an ideal topological space. For a function $f:(X,\tau,I) \rightarrow (Y,\sigma)$, the following properties are equivalent:

(a) f is continuous,

(b) f is pre-I-continuous and AB_I-continuous,

(c) f is α-I-continuous and WAB_I-continuous.

REFERENCES

- Abd. El-Monsef M.E., El-Deeb, S. N. and Mahmoud R. A. β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 1983;12;77-90.
- [2] Abd El-Monsef M.E. Lashien E. F.and Nasef A. A. On I-open sets and I-continuous functions, Kyungpook Math. J., 1992; 32:21-30.
- [3] Bourbaki, N. General Topology, Part 1, Addision-Wesley Publ. Co Reading Mass.1966.
- [4] Caksu Guler A., Aslim G. and Noiri T. On decompositions of continuity and some weaker forms of continuity via idealization, Acta Math. Hungar., 2006:110 (to appear).
- [5] Dontchev J. and Przemski, M. On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar.

1996;71(1-2): 109-120

- [6] Dontchev J. Between A and B-sets, (archiv, math from internet?), 1998.
- [7] Dontchev J., Idealization of Ganster-Reilly decomposition theorems, Math. GN/9901017, 5 Jan 1999 (Internet).

- [8] Hatir E. and Noiri T. On decompositions of continuity via idealization, Acta Math. Hungar., 2002; 96:341-349.
- [9] Hatir E. and Noiri T. Decompositions of continuity and complete continuity, Indian J. Pure Appl. Math., 2002;33: 755-760.
- [10] Hatir E., Keskin A. and Noiri T. On a new decompositions of continuity via idealization, JP Jour. Geometry and Topology 2003; 3(1):53-64.
- [11] Hayashi E. Topologies defined by local properties, Math. Ann., 1984;156:205-215.
- [12] Jankovi'c T. and Hamlett T. R. New topologies from old via ideals, Amer.Math. Monthly, 1990; 97:295-310.
- [13] Jankovi'c D. and Hamlett T. R. Compatible extensions of ideals, Boll.Un. Mat. Ital. (1992); 7:453-465.
- [14] Levine N. Semi-open sets and semi continuity in topological space,

Amer. Math. Monthly, 1963; 70:36-41.

- [15] Mashhour A. S., Ald El-Monsef M. E. and El-Deep S. N. On precontinuous and weak precontinuous mappings, Proc. Math. Pys. Soc. Egypt, 1982;53: 47-53.
- [16] Nasef B. A. A decomposition of α-continuity and semi-continuity, Acta Math. Hungar., (2002;97(1-2):115-120.
- [17] Nj ŷ astad O. On some clasess of nearly open sets, Pacific J. Math., 1965;15:961-970.
- [18] Samuels P. A topology formed from a given topology and ideal, J. London Math. Soc. 1975;10(2):409-416.