ON A CERTAIN UNIFORM STRUCTURE
Silayn A. Abiyed
Department of mathematics, Faculty of sciences, King Abdul Aziz University, P.O. Box 30203 Jeddah 21477, Saudi Arabia

(RECEIVED 17 September 2008)

ABSTRACT
A regular structure for a topological space is defined. Also, a relation between a regular structure and an Abian's structure is investigated.

INTRODUCTION
In [1], Abian defined a uniform structure for a topological space so that the theorem that a continuous function on a compact space is uniformly continuous holds. As uniform spaces are well known [e.g. 1, 4], one would naturally like to compare a uniform structure with a uniformity when the former is defined. However, it does not seem easy to do this between a uniform structure defined by Abian (we shall use the name “Abian’s structure” in the sequel) and a uniformity. In this paper, we define a regular structure (Definition 2.1 below) for a space so that the above mentioned theorem holds and it is easy to compare a regular structure with a uniformity. Moreover, a relation between a regular structure and an Abian’s structure is found and it follows that a topological space which admits an Abian’s structure must be regular.

1. PRELIMINARIES
We state here definitions occurred in [1] and a simple result for later use. Let X be a topological space and I an index set. For each $i \in I$, let \mathcal{G}_i be a collection of open sets of X. Moreover, for each $i \in I$ and each $x \in X$, let $\chi_i(x) = \{X \in \mathcal{G}_i : x \in X\}$ and $\Sigma_i(x) = \chi_i(x) : X \in \mathcal{G}_i(x)$. An ordering \leq for I is defined as follows. For $i, j \in I$, $i \leq j$ if and only if $\forall x \in X \in \mathcal{G}_j$. It should be noted that \leq is reflexive and transitive. The family $\{\chi_i : i \in I\}$ is called an Abian’s structure for the space X if it has the following properties (G), (B) and (M).

(i) If x is a point of an open set G in X, then there is an $i \in I$ such that $\chi_i(x) \subseteq G$.
(ii) For any i in I, we have either $i \leq j$ or $j \leq i$.
(iii) $\chi_i(x) \cap \chi_j(x) \neq \emptyset$ for each $i \in I$.

\text{ISSN 1012- 5944}
Next property (V) is an easy consequence of (I) and the fact that each member
in \(\mathcal{U} \) is open in \(X \).

(V) A subset \(G \) of \(X \) is open if and only if for each \(x \in G \) there is an \(I \in \mathcal{I} \)
such that \(S(x) \subseteq G \). Now, let \(X \) and \(Y \) be two topological spaces with Abian's structures \((\mathcal{U}, \mathcal{V}) \) and \((\mathcal{W}, \mathcal{V}) \) respectively. A function \(f \) from \(X \) to \(Y \) is said to be uniformly
continuous if for each \(\epsilon > 0 \), \(\mathcal{V} \) is mapped into some \(\mathcal{V} \) in \(\mathcal{V} \).

2. DEFINITIONS

In this section we define regular structures for a non-empty set and introduce
the concept of uniformly continuous functions.

Definition 2.1. Let \(X = (X, \mathcal{U}) \) be given and \(\Delta \) denote the diagonal of \(! \times \! X \). A
collection \(\mathcal{U} \) of subsets of \(X \times X \) is called a regular structure for \(X \) if the following
conditions are fulfilled:

1. \(\Delta \) is a subset of each \(U \in \mathcal{U} \).
2. The transpose \(U^T \) of each member \(U \in \mathcal{U} \) contains some \(V \in \mathcal{U} \).
3. The intersection \(U \cap V \) of each two members in \(\mathcal{U} \) contains a third one.
4. For each \(U \in \mathcal{U} \) and \(x \in X \), there exists a \(V \in \mathcal{V} \) such that \(V \; V(x) \subseteq U \) for all \(y \in V(x) \).

The above notions are as in [2, 3, 4].

It is clear that \(\mathcal{U} \) would be a base for a uniformity for \(X \) if condition (4) was
suitably strengthened. It is also clear that a topology for \(X \) can be induced by
defining a set \(G \subseteq X \) to be open if for each \(x \in G \) there is a \(U \in \mathcal{U} \) with \(U(x) \subseteq \).

Definition 2.2. Let \(\mathcal{V} \); \((X, \mathcal{U}) \) and \((Y, \mathcal{V}) \) be two spaces (with this notation, it
is understood that \(\mathcal{U} \) and \(\mathcal{V} \) are regular structure for \(X \) and \(Y \) respectively) and let \(f \) be a function from \(X \) to \(Y \). \(f \) is said to be uniformly continuous if for each \(V \in \mathcal{V} \),
there exists a \(U \in \mathcal{U} \) such that \(f(U) \subseteq V \) for all \(x \in X \).

3. RESULTS

Theorem 3.1. If a function \(f \) from \(\mathcal{U} \times \mathcal{U} \) to \(\mathcal{V} \times \mathcal{V} \) is continuous and the
space \(\mathcal{U} \times \mathcal{V} \) is compact (topological properties are relative to the topologies
induced by \(\mathcal{U} \) and \(\mathcal{V} \)), then \(f \) is uniformly continuous.

Proof. Let \(V \in \mathcal{V} \) be given. For each \(x \in X \), since \(f(x) \in \mathcal{V} \), by condition (4)
in 2.1, there exists a \(V \in \mathcal{V} \) such that \(V \subseteq \mathcal{V}(x) \) for all \(y \in V \). Also,
there exists \(y \in \mathcal{V} \) such that \(f(y) \subseteq \mathcal{V}(x) \). Since \(f \) is continuous, there is for
each \(x \in X \); \(U \in \mathcal{U} \) such that \(f(U) \subseteq W \). By conditions (4) in 2.1.
again, there is for each \(x \in X \) a \(U_i \in \mathcal{U} \) such that \(\bigcup_{i} U_i \supseteq \{ x \} \) for all \(x \in X \). Clearly, \((U_i, \{ x \}) : x \in X \) is an open covering for the compact space \(X \). Thus \(\bigcup_{i} \{ U_i \} = X \) for some finite set \(\{ U_{i_1}, \ldots, U_{i_n} \} \) in \(X \). By condition (3) in 2.1, there exists a \(U \in \mathcal{U} \) contained in \(\bigcap_{i} \{ U_{i_1}, \ldots, U_{i_n} \} \) in \(X \). Moreover, there exists a \(U \in \mathcal{U} \) for all \(x \in X \). To see this, let \(x \in X \) be given. \(x \in \bigcup_{i} U_i \) for some \(p \in \{ 1, 2, \ldots, n \} \). Hence \(U \in \mathcal{U} \). This together with \((\ast) \) gives \(U \subseteq \bigcup_{i} U_i \) for all \(x \in X \). This proof is complete.

To study the relation between an Abian's structure and a regular structure, let \(X \) and an Abian's structure \((x_i : i \in I) \) be given. For each \(i \in I \), we define \(U_i = (x_{i+}, y \in S(x)) \). With this notation, we have

Theorem 3.2. \(\mathcal{U} = (U_i : i \in I) \) is regular structure for \(X \) (we shall call it the regular structure induced by the given Abian's structure) and the topology induced by \(\mathcal{U} \) coincides with the given topology for \(X \).

Proof: We have to check if \(\mathcal{U} \) satisfies the four conditions in 2.1. conditions (1) is clearly satisfied. We shall show that \(U_{i_j} \in \mathcal{U} \) for each \(i \in I \) and condition (2) follows. It is easily seen that \(U_{i,i} = S(x) \) for all \(i \in I \) and for all \(x \in X \). If \(U_{i,i} \in \mathcal{U} \), then \(y \neq S(x) \) for any \(y \in S(x) \) (i.e., there is an \(X \subseteq I \) such that \(y \in X \)). Then \(x \in X \) (or \(y \neq S(x) \) which implies \(y \in S(x) \) or \(x \in U_{i,i} \)). To prove that condition (3) holds, let \(i, j \in I \) be given. In view of property (II) of \(\{ S(i) \} \), we may assume that \(i \neq j \) if it is. Then it is clear that \(U_i \cap U_j = U_{i,j} \). Finally, let \(i \neq j \) and \(x \in X \) be given. Fix an \(x \in X \). Since \(X \) is open and \(x \in X \), (by (1)), there is a \(f \) such that \(\gamma (Y) = S(x) \). Similarly, there is a \(f \) (we may assume \(k_y \)) such that \(\gamma (Y) \neq S(x) \) or \(S(x) \). It is routine to show that \(U_{i,j} = \{ x \} \) for all \(x \in U_i \). This condition (4) is also satisfied. It remains to show that the topology induced by \(\mathcal{U} \) is the same as the given one for \(X \). This is obvious by (II) and the fact that \(S(x) = U_{i,i} \) for all \(x \in X \).

Concerning the definition of uniformly continuous function, we have the following:

Theorem 3.3. Let \(X, Y \) be topological spaces with Abian's structures \((x_i : i \in I) \) and \(\{ Y_j : j \in J \} \) respectively, and let \(f \) be a function \(X \) from to \(Y \). We have:

\[f(X) = \bigcup_{i \in I} \{ f(x_i) \} \]
(a) if f is uniformly continuous according to § 1, then f is uniformly continuous according to Definition 2.2 relative to the regular structures induced by the given Abian's structures.

(b) if the space X is compact, then the converse of (a) is true.

Proof. Let the induced regular structures be denoted by \(\bar{U} = (U_{ij}; i, j) \) and \(\bar{V} = (V_{ij}; i, j) \) respectively where:

\[U_{ij} = \{ (x, y) : x \in S_i(x) \} \quad \text{and} \quad V_{ij} = \{ (x, y) : y \in S_i(y) \} \]

To prove (a), let \((x, y) \in \bar{U} \) be given. By assumption there is an \(i \) such that, for each \(x \in S_i(x) \), \(f(x) \in \bar{V} \), for some \(y \in S_i(y) \). Obviously, for any fixed \(x \in S_i(x) \), \(f(x) \in \bar{V} \) for every \(y \in S_i(y) \). Thus, \(f(U_{ij}) = f(S_i(x)) \subseteq \bar{V} \), \(S_i(y) \subseteq \bar{U} \), \(i \) = \(V_{ij} \), \(f(U_{ij}) \subseteq \bar{V} \).

We proceed to prove (b). For given \(i \in J \) and \(x_0 \in X \), fix a \(Y_i \in \bar{V}_i \) (if \(\bar{V}_i \)). Since \(f(x) \in Y_i \) and \(Y_i \) is open in \(X \), there is an \(i \in J \) such that \(V_{ij} \ni f(x_0) \subseteq Y_i \). Uniform continuity of \(f \) according to Definition 2.2 implies the existence of an \(m \) such that \(f(U_{ij}) \subseteq V_{ij} \) for all \(x \in X \). Now, \(x_0 \in X \) and \(U_{ij} \subseteq \bar{U} \), imply that there is a \(x_0 \in X \) such that \(U_{ij} \ni x_0 \subseteq U_{ij} \ni x \). We see that for every \(x \in U_{ij} \ni x_0 \), \(f(U_{ij} \ni x) \subseteq f(U_{ij} \ni x_0) \subseteq \bar{V} \ni f(x_0) \subseteq \bar{V} \). Noting that \(x_0 \) is an arbitrary point in \(X \), we have for each \(x \in X \) a \((x, y) \in \bar{U} \) such that \(f(U_{ij} \ni x) \subseteq \bar{V} \ni f(x_0) \subseteq \bar{V} \).

Assort that each \(x \in X \) is mapped into some \(Y_i \in \bar{V}_i \). Since \(x \in x_i \) must be a member of \(\bar{V}_i \) for some \(x \in X \) (the case \(x = 0 \) is trivial and is not considered), \(x \in \bar{V}_i \ni S_i(y) \ni x = \bar{V}_i \ni x \), where \(x \) is \(\in \bar{V}_i \ni \{ x \} \), with \(x \in \bar{V}_i \ni \{ x \} \). It follows that \(f(x_0) \in f(U_{ij} \ni x_0) \subseteq \bar{V} \), \(i \) = \(V_{ij} \), \(f(x_0) \subseteq \bar{V} \) for some \(Y_i \in \bar{V}_i \), the theorem is proved.

4. REMARKS

Remark 4.1. Owing to Theorem 2.3, Abian's result follows from our Theorem 3.1. If a regular structure \(\bar{U} \) for a topological space \(X \) (that is, \(\bar{U} \) induces the topology for \(X \) is induced by an Abian's structure), then every two members of \(\bar{U} \) are comparable with respect to \(\bar{U} \). However, in general a regular structure need not have this property and hence is not necessarily induce by an Abian's structure. Thus we can hardly say that Abian's result implies ours.

Remark 4.2. A regular structure for a space \(X \) is similar to a "symmetric indexed neighborhood system with 'local triangle inequality.'

Dated: Feb 20, 2065, 19:30:50.
for X^* defined by Davis [2]. Similar to his proof [2, Theorem 4], we can show that a topological space admits a regular structure if and only if it is regular. Consequently, a topological space that has an Abian's structure must be regular. It is unknown to the author whether a regular topological space admits an Abian's structure or not.

REFERENCES

عند شبكة مؤخّرة منقولة

سواح خلال السيد

قسم الرياضيات – كلية العلوم – جامعة الملك عبد العزيز

في هذا البحث يتم تعريف شبكة مؤقّرة تطبيقي ومن ثمّ دراسة العلاقة بين هذه الشبكة المنقولة وبين شبكة مؤكّرة منقولة.