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ABSTRACT

This paper studies from the viewpommt of vector fibrations and
veclor spaces of cross-sections, endowed with  appropriate
tapologies, the realm of ideas and results centered around the
Wetersirass-Stone  Theorem  for  algebras  and  modules of
coniinuous functions in the real and self~adjoini complex cases.
The proof of the equivalence between the separating and the
general cases of such results by means of a quotient consiruction
mativate the use of vecior fibrations,
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§ L. INTRODUCTION

This paper is partly expository. Our aim is to motivate the introduction of
"vector fibrations” and "vector spaces of cross-sections” in a faitly
elementary context. These two terms are defined in § 5 below, the
definitions being exactly the same ones given in [12] and [13], However,
we dn nat presuppose familiarity with these papers. The present paper is
quite self-contained, Theorem 1 being the only result accepted without
any proof. it is a version of the classical Weierstrass-Stone Theorem.

We hope to have succeeded in showing how very naturally vector
fibrations and vector spaces of cross-sections, endowed with appropriate
_ topologies, can be made to appear in the realm of ideas and results
centering around the Weierstrass-Stone Theorem. We do this in §'s 3 and
4, to which we refer the reader to explain the interesting technical
question that guided us in the reasoning therein.

The Weierstrass-Stone Theorem and the results we have in mind fit
into the following very general description. It is given a "large” vector
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space F over K, where & is either the real field R or the complex field C.
A vector subspace L of /' is selected and provided with a structure of
normed or of a locally convex space over K. Then one proves results
describing the closures in L of sufficiently restricted vector subspaces W
of L3 in particular, one proves results stating conditions under which B is
dense in L.

The point to be brought out is that in a vector fibration, by the
definition of it there is a "large" vector space F, of cross-sections, from
which many interesting vector subspaces L may be selected.

Let us fix our attention on a given vector fibration, a context of
which the settings for the usual versions of the Weierstrass-Stone
Theorem are examples. There is all along a "base" topological Hausdorff
space £ naturally provided with its algebra £ (£:%) of K-valued
continuous functions on E. In the further selection of the vector subspace
A= (E;K) plat a crucial role.

Some results may then be presented in pairs, a so called "general
version” of a result; and a special "separating version". The "separating
version” is usually a statement of density of H in L. It occurs when the
"convenient sub-algebra” A separating over £ in the sense that, for all
pairs ¥, , xa € E with x| # x, there exists a € A such that a (x;) = a (x2).

The question now arises of deciding whether, in each pair of results
ds aUuve, Le noplicaiien -

"separating case” = "general case"

is true,

This is the question we study in §'s 3 and 4 and which we offer as a
motivation for the introduction of vector fibrations. But we study it with
our minds firmly set on the idea of using a certain "quotient construction”
(see § 2) in tackling it. It is in this way that we succeed in arriving at
vector fibrations and in obtaining an insight into the sort of theorems one
might try to prove in their contexts - and this is the real crux of the
matter,
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However, this paper is written more in the spirit of an introduction to
[1Z] and [13] to which we refer to reader for further comments of a
general nature and connections with the literature. We have not striven to
obtain the strongest possible results here. But we observe that Theorem 6,
stated and proved in § 6. is strong enough to imply a simple proof of the
following generalization of the classical Weierstrass Theorem of
polynomial approximation (see § 6 for the proof as well as the
explanation of some terms and the notation used in its statement)

THEOREM 1. Let £ and F two locally convex Hausdorff spaces,
both real. The vector space P(EF), of all continuous polynomials on E
with values in F, is dense in £ (£,F) in the compact-open topology.

The proof of Theorem & given here is essentially a repetition of the
arguments Machbin used in proving his Weierstrass -Stone Theorem for
modules ([11], § 19, Theorem ). But MNachbin's theorem itself is not
used in that proof and follows therefore as a special case of Theorem 6.

Machbin spaces of a very special type occur throughout the paper but
are not referred to by that name until last remark in the paper. This
terminology is proposed by the authors,

§ 1 PRELIMINARIES

The letter & stands for a topological Hausdorff space throughout the
paper;, further restrictions on £ are explicitly stated when needed. The
letter & denotes neutrally either the real or the complex field. The symbol
¢ (E:K) denotes the algebra of continuous K-valued functions on £
under the usual pointwise operations. A non-empty subset 4 of £ (£k) is
said to be : (i) separating over E if, for any pair x y& E with x #y, there
is a = A such that afxclzafy); (i) self-adjoint in the complex case, 1.¢. |
when & is complex field, if for any functiom in 4, its complex conjugate
" function lies also in A. If A and W are subsets of £ (E:k), we put AW =
{aw; aesd, weW)LIf A is a sub-algebra and W is a vector subspace, we say
that ¥ is a module over 4, ar an A-module, if 4 ¥ < W
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For any non-empty subset 4 of £ (£ k). we shall donate by £/4 the
equivalence relation defined on E as follows - if x , y €E then x is
equivalent to y modulo EfA, if and only if a (x) =a (), foralla = 4. Let
I denote the quotient topological space of £ modulo Eéd and m the
quotient map of £ onto F; T is continuous and for each x € E, 7 (x) i5 the
equivalence class of x modulo E/4. Each m (¥} is a closed subset of E and
every a =4 is constant on 7 (x) . Hence, for each a & A there is a unique
function b 1 F —»K such that a = & 1. It is easy to see that be £ (I &} we
put B = {b; a = bz asd}. It follows that £ is a sub-algebra of £ (F; &),
which contains the constants, if 4 does also ; moreover B is self-adjoint
in the complex case if A4 also is. An all important fact is that B is
separating over F, which implies that / is a Hausdorff' space and
therefore compact if E is compact.

If X is any subset of E and / = £ (E:k) we denote by /| X the
restriction of fto X', and if I is a subset of ¢ (E:k) then L\ X = {/1 X f
cL) Also. ifx = F, thenLix)= {fx); fel}ick

If # is & subset of a Cartesian product 11 (F, ; y & FJ, then £ (¥} =
Hiv): f e £} = F, is called the y-section of £

§ 3. WEIERSTRASS- STONE THEOREMS FOR ALGEBRAS
AND MODULES OF CONTINUOUS FUNCTIONS

In this paragraph we state four results of the Weierstrass-Stone type and
indicate how wector fibratinne arige in 2 nstural way in the sudy of the
equivalence of the case in which the sub-algebra 4 separating over E and
the general case, For the sake of simplicity we shall assume in most of
what follows the following hypothesis:

Hypothesis H Let E be a compact space and A a sub-algebra of ¢
(E:K), containing the constants, which is assumed to be seli~adjoint in the
complex case. Assume that £ (EK) is provided with the topology of
uniform convergence given by the norm f': sup {| f{x)| ; x & £} forall f
e £ (Fk)
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The first two theorems of this paragraph are a separating and a
general wversion of the classical Weierstrass-Stone Theorem on sub-

algebras of # (F,k).

Theorem 1. Assume hypothesis /. Then A 15 dense in £ (&%) if
and only if A is separating over .

Theorem 2. Assume hypothesis & and let f =f (E:k). Then f
belongs to the closure of 4 in £ (E:£) if and only if £ is constant on each
equivalence class of £ modulo f44.

Betore stating the last two theorems of this paragraph we make the
following remark:

Remark 1. Let E be the closed unit interval [ 0,1]. The vector
subspaces P {[0,1]; K} and Ay of £ ([0 1]; K), generated by the functions
ts Oin=10,12 .)and t=t™(n=01.2.), respectively, are, in
fact, sub-algebras of to which Theorem 1 applies : they are dense sub-
algebras of £ ([0,1]; K).

However, the assumption that the algebras involved in Theorems 1
and 2 must contain the constants is an annoying restriction. For instance,
it seems obvious that L = §f ¢ (f0,1]: K}, fi0) =0} is the closure of the
sub-algebra A generated by the funchons t— g {(n=1,2,...) which 1z sclf-
adjoint in the complex case but does not contain the constants. This fact
does not follow directly from Theorems | and 2,

The above restriction can be dropped at the price of slightly
complicating the necessary and sufficient conditions involved. But then
one observes that it also seems obvious that £ is the closure of the vector
subspace W generated by the functions t t*"(n = 0,1,2...) — and W is
not a sub-algebra of # ([0,1]; X). Notice the following facts, however :
(i) A; and W are vector subspaces of L which is by itself a vector
subspace of ¢ ([0,1]: K); (i) A and W are Ag-modules and A, is a sub-
algebra containing the constants which is separating over [0,1]and is self-
adjoint in the complex case; (iii) for each x =0,/ the equahties Az} =
L {x) and W (x) = Lix) results. The fact that L is the closure of both A;
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and W iz then made obvious by the following two versions of Nachbin’s
Weierstrass-Stone Theorem for modules )[11)], 19, Theorem 1). With
an ¢ye on the possible appheations of these results to algebras, we still
add the following comment:

The Relative standing of 4z on Ag above is typical of a more general
situation. Let & be a sub-algebra, self-adjoint in the complex case, of #
(K} whire E 15 a Hausdorff space, say. If B does not contain the
constants, then the sub-algebra 4 generated by £ and the constant does,
and A 15 also self adjoint in the complex case. MNow B is always an A-
maodule, and the £44 equivalence relation and the FB equivalence
relation, as defined in § 2, coincide. Observe also that a vector subspace
W ¢ (E; K)is a B-module if, and only if, it is an 4-module

Therorem 3. Assume hypothesis & and that 4 is separating over E.
Let L and W be vector subspaces of ¢ (E;K) with W L, and assume that
H 15 an A-module. Then W is dense in L if and onby if Bix) = Lix), for
alx e £

Theorem 4. Assume hypothesis H. Let W be a vector subspace of 7
(Lckh, with AWSH. Then f ¢ (E:K} belongs to the closure of Win ¢
{E:K) if and only if £ | X is in the closure of WX in # (X K) for every
equivalence class X of £ maduloe £44,

Therarem 1 (resp. Theorem 3) is a corollary of Theorem 2 (resp.
Theorem 4), and there arises the question of their aquwa]em:e We treat
first the algebra case.

Proposition 1. Theorem 1 implies Theorem 2.

Froaf. The necessity part of Theorem 2 is evident. Let E, 4 and fbe
as m Theorem Z, To £ and A there corresponds F, m and B by the
quotient construction of §2. Since fis constant on each equivalence class
of £ modulo £44, there is a unique ge¢ (F:K) such that f = g.x By
Theorem 1, B is dense in £ (F;K). Therefore g belongs to the closure of
fin § (FK). Since the mapping A h. is an isometry of £ (F:K) into
¢ (£0K} it follows that fbelongs to the closure of 4 in ¢ (E:K).
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Remark 2. Suppose that 4 is closed. By Theorem 2, 4 consists then
of all f=# (E; &k} which are constant on each equivalence class of &
modulo B4, The maﬁ Jif) = g where g 15 the umque g=¥¢ ((r,K) such
that £ = g is then a linear isometry of 4 onto jf4) = B. Since # is dense,
it follows that B - ¢ (F:kl. Hence we have proved the following
“representation result™.

Proposition 2. Assume hypothesis A and that 4 i1s closed. Then
there exists a compact space £ jointly with a continuous map & of £ onto
F and a lingar isometry j of 4 onto the algebra £ (Frk). The map j is also
a * - algebra homomorphism.

Eu'c now turn our attention to the case of modulls. | = £ 4 W and fbe as in
Theorem 4. " obtain F, wand B via the quotient construction. However, since [ is
notnecessarily constant.on each equivalence class! & modulo £/4 we cannot factor f
through 7 in zeneral as before. By insisting on the guest for natural “quotient objects”
to attach to £ znd ¥ one is led naturally to consider vector fibrations, Indeed, to each
f et (E:K) t=zre corresponds a cross-section (| &7 (4 y&F), i.e. an element of the
Cartesian preduct P = I (F,; yeF), where F, = £ { x "'y:k) for each yeF. Let j
denote the map}'H(fﬁ']ﬂ;l; y eF), andlet £ =7 (¢ (Ek)) and &= j(W). # and FFare
provided with the structure of vector subspaces of the product vector space II (.
yefF), and # is then a vector subspace of f«.Notice that

Fy={fix () fet (E:K)} =2 ()

by the Tietze- Yrhsohn Extension Theorem. The following additional
resulls are true:

a.  Foreachy & F, let vy be the sup-norm on £ (= (k) =§ (),
Since & (1 is closed in E, hence compact, (£ (), v/ is a
Banach space.

b.  Since Bk (Fok), P=11 (F,; vek) has the natural structure of a
B-module - if & =8 and (#, ; ¥ =F) is an element of P, then b (f, .
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¥ =F) is the element (5 filf. o =F). It follows that W is o B-
submodule, since W is and A-module.

¢ Letv=yviy: y =F) and for any fef (E:k) put
AN, =suptvLf | v e F.

Then O < || j{#) ll.<0< and j (f) - || ji¢# || is a norm on The map §
£ (E;kl — £ is a linear isometry of § (£ k) -onto-( £ | |lvy is 2 Banach
space and the closure of W in (£ || L) s (W), where (W) denotes the
closure of Win ¢ (E:K).

d.  The condition on f of Theorem 4 is equivalent to the assertion
that 7)) belongs to the closure of W ¢y, in {1 (), wil) for
- each y = /. This leads to the introduction of the vector subspace
= ¢ ofall cross-sections (f 7 () ¥ <F) in ¢ such that f o
(3 belongs to the closure of 'y in (¢ 1), v for each p =
. The vector subspace +7is the mage under j of the vector
subspace L = §f =¢ (E:E); Y, belangs to the closure of W/ ¢ in
£ (X:K) for each equivalence class X of £ modulo £ / A}l Hence
the thesis of Theorem 4 is equivalent to the assertion that -+
the closure of W in (£, ||}

[ The 'I:_E].I'Idi.ﬁﬂ]'l in Theorem 4 is E—'qUi"-'EI.[ﬁ'.It to the assertion that
Wy is densein#(y) for each y & F, as subset of (£ (3, v(3)).

Remark 3. It is now clear that we have all the mgredients for a
version of Theorem 3 that would imply Theorem 4 by the sort of quotient
argument we decided to use. Roughly speaking, It should state that the
assertion " is the closure of #in (¢ J (k) M follows because B is
separating over & and }is a vector subspace of.%" which is a S-module
and is such that Jt° () is dense in.% (Wfor v = F. The conjecture that
such a result might be true is reinforced by the fact that we do know that

= Win (£.)) L) : this is equivalent to [, =FF by item d, and L~ W is
true because Theorem 4 is true as a particular case of Theorem 1. § 19
[11], through we are not assuming it to have been proved.:
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§ 4. THE SEMICONTINUITY CONDITION

We consider the "module case’ closed. There is however a somewhat
subtle point still left untouched and which is most important for the
selection of the proper hypothesis in Theorem 5 of the next paragraph.

We reconsider the situation In item c) of § 3 abowve. It 15 stated there
that for cach f = £ (E:K) it is true that

0= sup (vl v m i) pelitea {*

and, in particular, we may state that y > sup {|fix)); xex '1(}{} 15 a finrte
non-negative function of . The question is ; is (*) valid because y
sup {|[fix)); x=x (¢} is a continuous real-valued function of the compact
space F?  The answer is no. These functions are only upper
semicontinuous in general, as the following example and lemma below

show,

Example 1. Let E be the closed unit interval [0,1]. Let A be the set
of all f=# (E;&) such that f is constant on [0,1/2]. 4 is clearly a sub-
- algebra of £ (E:%) which is zelf-adjoint in the complex case and contains
the constants. Applying the quotient construction to 4 and with £ = [0,/
we obtain F={{0,122]} fixtx = (1/2,1]} and the map & : [1/2 1] — F,
such that # (1/2)= [0,1/2] and Afx)=fx} for all x&(1/2,1], is a
homeomorphism of [1/2, 1] onto &, The function x = f{x) = /-x of ¢
(E:K) is such that vy ff % (w]=1 at y=[0,1/2] and v} [f]x ()] = 1-
x for all y = fx} with x & (1/2,1]. The function y > sup {| fixlx = &
'{(¥)} is clearly upper semicontinuous on & but it is not continuous at the
point y=[0,1/2] of F.

Of course, a non-negative finite upper semicontinuous function on a
compact space 15 bounded and attains its maximum in at least one point
of the space. The relevant aspects of item ¢ are a special case of the
situation covered by the following result

Lemme 1. Let E and & be (non-empty) compact Hausdorff spaces
and m a contimuous mapping from £ onto F. For each upper
semicontinuous fimction g : Ers R define A3~ sup faix) ; xex' (W)}
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for all yeF. Then the correspondence yi— Ay is a real-valued upper
semicontinuous function on F. ;

Proaf. For cach y £ F, the set {3/} is closed in £, therefore ' (¥} is
compact in £ and non-empty because 7 is non-empty. Hence there is an a
&7 such that hiy)=g'(a)= sup {|gik).xe n v} because g is upper
semicontinous , 5o that A is finite.

Denate by /i the real-valued function on F° which has the value hfy) in
cach y = F. Let r be some real number. The set {xeF; gz r) = Vis
compact, because g is upper semicontinuous and b is compact, hence T
(¥) is compact in F. We claim that & (¥) = {y=F; hfy) = r), which proves
that # is upper semicontinuous. Indeed, If ¥ =x (¥), then, y = afx) tor
some x £ F, and then Afy} = gix)= r. Conversely, if y ¢ w (¥} and i= T
'3, then gft) < r; it follows that A} < r because there is fy = () such
that gi¥o) = A/ and the proof is fimshed.

§ 5. BASIC DEFINTIONS AND RESULTS

The considerations in &'s 3 and 4 justify the introduction of the following
notions.

Definition 1. A vector fibration is a pair (E; (F\; x b)) where £ is
a Hausdorff space and (F.; x £ EJ is a family of vector spaces over the
same scalar field £ Such a vector fibration is also said to be a vector
fibration over £. The product set 11 (F; x<F) is always provided with the
structure of a product vector space, it is the vector space of , -or attached
to. the vector fibration. A cross-section is then any element f~{fix);x sk}
of the vector space 11 (F,; x&E), and a vector space of cross-sections is
any one of its vector subspaces. For any cross-section f=(ffx);x <k and
any K-valued function a on E, we define the cross-section a f by putting
{a fifx)~afx)fix) for each xeE A vector space of cross-sections, W, is
said to be a module over a sub-algebra Ac ¢ E:KJ, or an 4-module, if 4
W= fawacAwelW} c W

Any family v = (v, . ¥ & FJ such that v, is a semi-norm on F for
each x & E is called a weight of the vector fibration (£ (Fy x ), then,

Diadta . Sai, 2005, 2%, 21-45



Siham J. Al Sayyad ; H

ity & Fy, wefpf denotes the value of v, at y. If £ = (fx); x<F) is a cross-
section, v [f] denotes the function on £ which has the value v, [ffx)] at
each x cK.

Example 2. ¢ (£;K) is a subsct of 11 (F,; »=F) where F, = K for
each x b, If F; = K for each x =, (E: (V. ; xeE)) is, by definition, the
scalar fibration over E - also said to be the real fibration over Eif K = R,
or the complex fibration over £ if K= C. Its vector spaces of cross-
sections are simply vector spaces of A-valued functions on £ under the
usual pointwise operations, and ¢ (E:K) is perhaps the most important
among them,

We now state and prove result conjectured in Remark 3.

Theorem 5. Assume hypothesis  with A separating over £ Let (£
(Cx x & E}) be a vector fibration over £, and v = (v, x = EJ and
respectively a weight and a vector space of cross-sections pertaining to it
such that v [f] is upper semicontinuous on £ for each f = ¢

a. Thenf = £ = ¢l = sup {v.[fix)]; xeE] 1% a semi-norm on £ It
18 a norm if v, is also a norm for all x £,

b, Let®and M be vector subspaces of # such that#* > Mand Misan A-
module. Then M is dense in# in the semi-normed space (£, || |}, if and
only if, for each xe K, H{z) is dense in.# (x) in the semi-normed space { £

(x4 ),
Proof. The inequalities 0< || ||, < o are true for each / & ¢ because
x v |f{x)] is a finite non-negative upper semicontinuous function on
I: for each f = ¢ the remaining assertions in item (a) are also easily
proved. -
The necessity part of the assertion in item (b) is evident. We prove
its sufficiency below.

Let f= (f i x & &) be an arbitrary but fixed element of 5 Let any = >o be given. For
cach t & £, the assumed density of H'(0) in% (¢ as subsets of (£ (1), vy implies (he
existence of w, = fwyk) x &F) in #5uch that

Dietla J. Sci. 2005, 20, 21-45
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Vil -w ()] < &

Since. W =% and # is a vecior space of cross-sections, wo h:;wa_,.f - w5 for each
¢ e L and the function x = v [ife) - weki] is upper semiconfinumes on £ becanse e
£ . This implies that &, - fxek; v, [fix) - w k)] = €} i5 compact for each ¢ e £ [V, -
EAK, is-._:p:m _ﬂ__nd (L 2 t & E} is an open cover of the compact space £ and there are
finitely many points £, ¢, in & such that f-;::HU,I :

Let {gp i=1,..n} be a continuous partition of the umty
subordinated to the covering { U, ; i =1,...,n} of & (see [10], Chapter [, §
12, Theorem 4}, Then @ & £ (£ R), 0= ¢ = 1, and gy (Kg) = (0} for
each { e {1,....n} ; and for each x < E the equality I7, ¢ (x)=1 results.
Consider the cross-section g = (&(x) ; x € E)= I, g W, . We claim that

v, [fix) - g ix)] = ceachx =F. (n
To prove this we notice that

v [f(x) - gx = MEL @, () () - wy (e < 27, @ (e [ () - w, ()]

This shows that (1) follows from ¢ (x) ve [fix) - wy (] = € @ (%), xek;
this estimate is proved by cbserving that gy (x) = 0 if xeKy and that v,
[fix)-wa (k)= = if x = [/, This proves (1). Now, 4 is dense in ¢ (E; K} by
the Weirstrass-Stone Theorem (§ 3, Theorem 1). Hence given any & > 0,
thereare iy =4 (i = 1,... ) such that for each xeF and i {4, ., n}, |
o (hh ()| = & Sinee® s an A-module, the cross-section
w, Ef hw, belongsto® Letting M = max {|jwill ;7 = 1,... .}, choose
& = =/Mdn, and use (1); it then follows that

I|.£= wile = supdvdfie) - w ix)]; x eE} <
e+ Er, supifp, (x) -k (x)v,[w, (x};xce} e +3 XL,

i.H"h"P = FE.

This completes the proof.

Remark 4. In the remaining part of this paragraph we prove two
propositions which together add up to an interesting representation result.
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The importance of this result in the present context lies in the
illuminating role it plays as regards semicontinuity assumptions as such
as the one in Theorem 5. In Theorem 5, it is clear that, for each x ¢ E, the
part of 'y outside of its vector subspace ¢ (v, indeed out of % [, plays
no essential role; that is, we might replace the original vector fibration by
(£ (# i), x e E)), or even by (E; &) x Bl

Definition 2, Let (E(Cy x =E) be a vector fibration in which is
given a fixed weight v such that v, is a norm on C; for each x=E: The
space k£ is assumed to be compact {(and non-empty).  Let #eIl (F;x &
£) be a vector space of cross-sections, A representation of# is . a linear
map # of " inte £ (F-K)where F'is a compact Hausdroff space provided
with a continuous onto map © : F —& such that for .all / e¥andall ¢ e £
the equality

Ve [l = sup {|0rcl) 0 sy € 2 ({xD

resubts.  And.#is said to be essential if. 5 fxp = O forall x e £,

Froposition 3. Under the conditions of Definition 2. if % admits a representation,
Uhen £ =55 |, = sup {v, [ix)] & = £} is 2 norm on 2 and # is  linear isometry of (5
Il lls} inta (£ (FEL || Jeh where || e is the sup norm. Moreover, for each f =5 the
function x = 1, [\ is upper semicontinuous on £

Prov):™ for eachi £ =2 write. | = r). By the debistion of Tepresalotion. the
cquality v, [fx)] = sup {I:.I': il ¥ & =YY is true for each x & E Since = is
continuous and ento, {x' ({x}% r ¢ F) is a partition of F into non-empty, compact
subscts; “.'-':Id gince ,} e £ (F:E} for each - =5 it follows that

sup {v [fix)]; x € E} = sup {sup{| f () ¥ e (fx})}ix e B} =
=sup {| F Ly €F) =] Flir ==

It 15 now clear that » i5j linear isometry of & || 1) imo { £ (F: & U [|«). Let fbe a fixed
element of . Since f =rf = £ (FK) is related ta v /] : E= 1 (F) — R by the set
of equations
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V)] = sup {| £ () |y € 2 (4=l x ek,

the upper semicontinuity of v [f] follows from Lemma 1. The proof is
now complete.

“The following converse of Proposition 3 is true.

: Froposition 4.Let (E: (T, x € E), v, and# be as above, Assume that # is
essential and that v [f] is upper semicontinuous for each £ .5 Then there exists a
representation of &

FProaf. The proof consists of the construction of a compact
Hausdorff space F jointly with a continuous onto map n : F— E and a
linear map r - £ (F:Kisuch that

Ve [ftxd] = sup {lrg) 6] p e ({xb}
forall ¥ =%" and all x & E.

First, observe that the function: f «# =il .- sup {wlfx)], x £ £}
i% & NOTM on

# Let BIC.). x = £ and F (") denote the unit balls of the continuous duals {7,
x< £ and 5, respectively, of the normed spaces (C. v.), x = K, and &', || i), as
inplogical subspaces of these continuous duals provided with the respective weak-star
topologies o (T (), x e E anda (#,.2). B(C.).x e £ and B (%) arc compact
Hausdorff spaces by the Alaoglu-Bourbaki Theorem. F, purcly as a sef, is defined
through the equation

F =i x B(C.)xeE),

F is a digjoint union, or sum, of the sets B(C,), x = E This set is
provided with natural onto map n © F — E such that for each (x, ¢) & I,
X, @) =x

The bulk of the proof consists of providing F with a topology. Define
@1 F - B () as follows. For each (x, @)  F, that is, for eachx & E
and @ = B (), the value of @ at (x, @) is the function @, .k
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such that  » 4 (f) = @{fix)) for all f %" This definition of  is justified
by the following assertion: *

(1} wype B & oreachx e Fand each p e £ B (7).
Indeed, @, ,is obviously linear and,

(2) for each /&2 Lo .(0l= lp(en |< v, g < ir),
This computation also proves the necessity part of the next assertion:

(3) A linear functional ® on=" helongs to the image set o (F) if,
and only if, there exists x = £ such that | ® (7| = ve [f13)] for allfess If
this condition is satisfied, then ® = @, , where ¢ & B (C)is such that
for any given z € €, (z) = @ (f) for any /€. for which fix) = =

Let x and o be as in (2) for a given ®. The function o is well-
defined. indeed i/}, /> €% and fi . (x), then |@ (f;) - ® ()] = @ (f; -
£ ve [F1(x) - 2 (x)] =0 ; on the other hand, given any z = (; there is af
'€ % guch that f{x) = z, because.% is essential. @ i8 obviously a linear
functional on . Actually, ¢ € B (C.); for, if z & C, andf e_3°are such

that fix) = z then ¢ (2) = @ (f (x)), and therefore !m{z} |='I=[,i"" ) 2w
{fx)f v [z] which proves that @ B (C.) because v, is the norm of 7, .
For this g, what is @, , ? It is such that for all z & . or, since52is
essential, for all i), fege itis true that @, (0 = o [fx) = O @,
Hence @ = @, , £ @ (F). and the proof of (3) is complete.

Tothe maps nt : F—=Eand o, Fs B (&) corresponds the map
nx @ : F=»Ex B (5",
(4) m% @ is an injective map.

To see this let (x, @) and (¥, y) be elements of F such that x, @y p)=
0t @y). Thenx =y hence @, p- @, v, ie forall fe?, w, (N =
P () (x)) = @ yelf) = © (fx)} implying that ¢ =P (because L{x) = ().

Providing Ex B (#') with the product topology, it is then a
compact Hausdorff space. The following assertion is true as a
consequence (in particular) of the semicontinuity assumption
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(5) The image (mxa )(F) is a compact subset of the compact
Hausdorff space Ex B {(2").

It is enough to prove that (mxa ) (F) 18 closed in E x B (&'). To
this end let (¥, @ .0 be a net in (mxa ) (F) convergent to (), P)ex B
(£"): Since £ x B (2"")Ihas the product topology, it follows that x, — y in
E and that @ 5 z—>® in B (2°'y . However, convergence in B =3
means weak convergence, therefore, for each [ e,

& g (1) =y (o) =2 (/)

results. Using (2), the inequality | @ 4, o (] = [Ax)] follows since x — y
and v[f] is upper semicontinuous for eachf % it follows that

!iiﬁ|ﬁ=&.,¢-{f ¥=|@(f)]= him supv [f(x; =, [f ()]

for all £ €% (3) now implies that & € @ (F); actually, © = @ ., where ¢
el (C,)with o (z) = @ (f) for z & L), and [ 5 with fly) = z. Hence
(1 @)= (3, @ ) =@ (F) proving that @ (F) is closed in £ x B (&),

By {4), mx wis an injective map so that the correspondence (x,
pleF—= (x, ».p e(mx @) (F) is bijective. I is topologized by
transporting to it the structure of a compact HausdorfT space of (7= o J{F)
via this bijection. With each f €% | associate f: F—K defined by
j{:r @ = e p () = o) = p(fx)) for all (x,p} eF. Assume that it has
been proved that j ef (fK)for all| fe and consider r .23 ¢ (FIK)
such that r (f) = ffur all 7 % The map is obviously linear. As a
consequence of the Hahn-Banach Theorem, the equalrty v, fﬂ:r:]] = sup
Haen | o e B(CY is obtained for any x =F and any f625 b,
clearly, sup | |1;|me} | pe B (C)=  sup | | f{x,:p] |-pe
B (C)=sup{ [ (M0 |; yr'(fxh), since m'({x=(x} x B((C,).
Therefore r is a representation of % except that the assertion "Hf) =
Fel (fE) for all fe2 still remains to be proved. The truth of the
assertion follows from the following remarks.

. By the definition of the topology of F, the map mx & Is continuous,
Fix f €.%. The evaluation mape B (&)1 @ {f} is continuous in the
given topology of B &7} hence, gr: E xB (% ) K such that s
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{x.®)=D (f) for all 1x. PIeE =B (2"} is continuous. Finally, f=r(f) = s
(7= a ) and the proof is complete,

§ 6. A MORE GENERAL RESULT - APPLICATION - COMMENTS

There corresponds to Theorem 5 a "general version" in which 4 is not
assumed separating, Theorem 6 is such a version except that the
conditions are relaxed and £ is allowed to be a completely regular
Hausdord space.

Theorem 6 1s a generahzation of MNachhin's Weierstrass-Stone
Theorem for modules of scalar-valued functions as stated in [11], § 19,
Theorem 1, and of which Theorems 3 and 4 in our § 3 are special cases
The reader will notice that Nachbin's proof of this theorem in [11] was
repeated almost verbatim depends only on Theorem 1 plus some
algebraic-topological arguments, in particular a quotient-type argument.
Machbin's theorem, referred to above, may then be considered as a first
apphcation, in fact, an obvious specialization of Theorem &; in this sense,
Theorem 3 is an obvious special case of Theorem 5.

Theorem 6. Let " and v be, respectively, a vector space of cross-
sections and a weight of a vector fibration (£, (F.; x =), such that v[/] is
upper semicontinuous for each [ = . Assume that E is completely
regular and that A< ¢ (£:K) is a sub-algebra containing the constants and
self-adjoint in the complex case, and denote the set of the compact
subsets of £ by Te. The following results are true:

1) For each Ke¥eand f eC, put p.i (f) = sup {v[f(x)]; xek} Then
(Pok KeFeiis a directed family of seminorms on . Let @ .. be the
topology en C defined by this family of seminorms. Then (C, @ ..) is a
locally convex space which is separated if v, is a norm on F, for each x
&k,

2} Let W —C be a vector subspace which is an A-module and f; &C.
Then fo belongs to the closure of W in (, @ ,.) if, and only if, for any
equivalence class X & modulo E4, any compact subset £ X and any
e =), there ia w W such that p.x{ @ -fo) < .
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3) Under the conditions of item 2, suppose further that 4 1s
separating over . Then fi belongs to the closure of Win (C @ +.) if, and
only if, for any >0 and x & £ given, there is w el such that v, [w(x)-
filx)] <= Also, W is dense in (C, @ .. if, and only iff ¥ (x) is dense in
(Cx), v} for eachx € E.

Proof. All assertions in (1) and the necessity part of (2) are easily
proved. We treat the sufficiency part of (2) only. We may then assume
that £ is compact (compare [11], § 14, Remark 2). Now hypothesis &
applies to £ and 4, and we obtain, F.B and = by the quotient
construction; and (C, @) is the semi-normed space (C.| |.) where
L7 [l =supive [Ax)); x = E} for all f & C. Foreachy € F, G- {fi () f
e '} is a vector space over & in a natural way and (F; Cy y e F)) is a
vector fibration, Since 77 () is a compact subset of £, the function / | o'
() =, [flx f_y}] = qup {w [Ax); x & ')} is a sminorm on . Then
£ —{f {f|ﬂ Yoy e Py feCland =1 @, Wa_—ﬁ'}araw.nmr
spaces of cross-sections of (F; (C; v e Fyand ¢ (y) = C, for each p & F,
and ¥ = {¥ 4 y £ F) is a corresponding weight. It follows that v [f] is
uppersemicontinuous on f for each f = €, and that l ¥ = R such
that Li'"| sup{ v [flr ' (WL yeFl _,il"c ¢ is a semi-norm on £

Let L & C be the set of all f & C such that £| n"'(3) belongs to the
closure of #(y) in ¢ (y) = C, provided with the semi-norm ¥, for each y
eF. Let#={:f=%) Definei  —»¢ By putting iff) = 7 for each
f e . Theorem 5 applies in an obvious way and the proof of (2) ends.
Results in item (3} follow tnwially from item 2 because the fd —
equivalence classes are the one point subsets of £, This completes the
proof

Example 3. Let F be a Banach space with norm || || and for each
point x = (¥y,.......%,) in real Euclidean #-space, R®, put F. = F. Consider
the vector ﬁh]’&tlﬂﬁ (R"; (Fx x £ R") ; from its vector space of cross-
sections, distinguish £ (R™ F), the vector space of all continuous F-
valued functions on R" under pointwise operations. For each x = R let v,
= ||| ; then v = {3, x = R") is a weight in the above vector fibration. For
each /' e £ (R ; F), the function v[/] is upper-semicontinuous. Theorem
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6 applies with £ = R" C= £ (R" . F) and v as above, Consider ¢ (R" ; F)
provided with the corresponding topology @ :it is the compact-open
topology on £ (R"; F)and A (R"; K) and A (R" ; F) be the vector spaces
of infinitely differentiable functions on R" with values in X and in F,
respectively,. A (R" ; K) is a separating sub-algebra containing the
constants and self-adjoint in the complex case; the same assertions are
true with respect to the sub-algebra A. (R® ; K) of the f & A (R" ; &) with
compact support, A (R”; F) and A, (R® . F) = {f € A (R" ; F); f has
compact support} are vector subspaces of ¢ (R" ; F) which are A {R" ;
K) — modules and also A. (R" ;. K)- modules. For each x = R" the x-
section of A, (R" ; F) is equal to F/ : it is enough to consider £ @ y
=A(R" ; F) where y is an arbitrary element of F and fie A{R" ; K) is
such that £ {x) = 1. Theorem 6 then implies that A(R" : F) and A (R" ; F)
are dense in{ ¢ (R"; F), ¢.c).

Remark 5. Let I be a vector space over K and (g, j =) be a filtrant
family of semi-norms on it. Then the set of all semi-balls {f & L | ¢ (0 <
Al jeJ = =10, is a fundamental system of neighborhoods of the zero of

-L in the locally convex topology on [ defined by the family (g, = .J).
Under such a topology on L, a subset W < L is dense if, and only if it is
dense in the semi-normed space (L, ;) for each j <./

Theorem 7. Let E and F be two locally convex Hausdorfl spaces,
both real. Provide the vector space ¢ (£:F) of all continuous maps from
£ into I with the compact open topology. Then the vector subspace of ¢
(£7F) of all continuous polynomials defined on £ with values in / and of
fimite type is dense in £ (£

FProof. First we explain what is the compact-open topology in ¢
{£:F). To do this we place ourselves in the context of the vector fibration
(e (Fo x eE)) where Fp = Fforall x = £ and, at first, think of ¢ (E.F)
as having only the structure of a vector space of cross-sections of this
fibration. As in Theorem 6, welstFr: denote the set of compact subsets
of . Let 5(F) be the set of all continuous semi-norms on . For each g
&5 (I}, the constant function x &'E = v,(x) = g is a weight in the present
vector fibration; for each g s(F)and each K &% ., introduce f ¢ (E:F)
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> el =sup {valx)ffix)]; x €K} = sup {gfix)): x = K}. It is clear that
(peqiiq €5 (F). k €FF) s a directed family of simi-norms on £ (E7F) £
(E-E) is provided with the HausdorfT locally convex topology defined by
this family, and this topology is precisely the compact-open topology on
¢ (E:F) we have been referring to.

Next we introduce a set @ < ¢ (E; R) of real continuous

' polynomials on . By definition, 4 is the algebra generated by the real

constant functions on £ together with the elements of the continuous dual

Efc ¢ (E: R) of E. The algebra A contains the constants and is

separating over £ because E is a real locally convex Hausdorff space and
A = E* This assertion is a corollary of the Hahn-Banach Theorem.

The vector subspace W < £ (E:F) of the continuous polynomials
on £, values in F and of finite type is to be understood as being the set of
all functions w = ¢ (E-F) of the form : for some integer n# = 1, there are
ay aecd and vy...., vy & F such that w=ayw+ ...+ aws To simplify the
notation, write now £ (E:F) = C purely as a vector space of cross-
sections, It is clear that for each x = £ the equality W (x) = Cix) = F
results.

The proof of Theorem 7 is now reduced to a obvious application of
Remark 5, after applving Theorem 6 for (£; (Fo x = EJJ, C, W as above
for each choice of v =1, g 5 (F). The proof of Theorem 7 is now
complete,

Remark 6. The above arguments may be repeated to give a proof of
a version of Theorem 7 for complex spaces £ and /. The notion of
“polynomial” must be interpreted as indicated in [12], § 7, Remark 8.

These results complete and generalize a result of P.M. Prenter, Bull.
Amer. Math, Soc. 75 (1969), 860-2.

As an application of Theorem 5, we shall prove the following
result:

Theorem 8. Suppose that £ and F are real Banach spaces and that £
is reflexive. Let He be the closed unit ball of E with center at the origin
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and x ; £ —F a compact linear map, Then, for any &= 0 given, there is a
continuous polynomial w:fi— 7, of finite type such that

Ju(x) - w, <e for all x =By

This statement remains true for complex Banach spaces £ and F if w is
taken to be an element of the vector space W — ¢ (E; F) defined below
{see Remark 6 above).

We shall prove the version of the result which is valid for real or
complex spaces,

We say that @ ; & — F is anti-linear if for all x, y=F and ¢ & K,
afe+y) = a (x) +a (y) and afcx) = Fafx). Let £’ be the set of all
continuous anti-linear maps a:f - Let A be the sub-algebra generated
by £ £ be the set of all continuous anti-linear constant functions on
£, 1t 13 clear that 4 coincides with the algebra introduced in Theorem 7
when £ and & are real Banach spaces. It is also easily seen that 4 is a
separating sub-algebra of ¢ (£;K), contaming the constants, which is self
adjoint in the complex case. Let W be the set of all continuous functions

“w:k— F of the form : for some integer # = 1, there are ;... a, =4 and
Vi,....¥y & F such that w = ayv;+ .. .+ @, The span of the range of each
w < Wiz a finite dimensional vector subspace of /. Moreover, ¥ is a
veclor subspace of £ (E:F) which is an A-module and Bix) = F for all x
o

Let £ denote £ provided with the weak (or weakened) topology
a (L7, (B.), denoting By as a topological subspace of Ea . Consider
the vector fibration ((B,),. (Fw x € (B;),)) where i, = Fforal x &
(B, ), 7 distinguish its weight v such that vx)= || | _for all x = (8.)_and
its vector space of cross-sections C = F{(B,.),; F). W \Be = f\By w <
W} is a vector subspace of C such that (W\Beix) = C ) = F forall x
{8 ), and which iz an 48z - module, where A4/B is the separating sub-
algebra of £ (B.),, k). WBe={w\Be, w = W} containing the constants
and self-adjoint in the mmp[&x cas¢ defined by putting A\E8g
falBg -a e A}
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Let " be normed by | | . where

/], =sup {wlfix): x € (Bg), }=sup {[F(x}],; x € Be} forall f £ C

Thearem 5 now applies in an obvious way (with L = C and W = WBg)
implying that W\Bg is dense in €. The proof of our result is finished
when we observe that u\Be belongs to C, that is , w'Bs : (B.), —F'is
continuous

Remark 7. In the statement of Theorem 6 only one weight, v, is
mentioned as such, But it is clear that all weights of the form Xev = (Xa
(t) vy x € ), where B is an arbitrary compact subset of £ and Xg is its
characteristic function, enter into the definition of the topology @, on (.

In fact, the reader will easily convince himself that every time we
topologize a vector space of cross-sections, even when they were only
vector spaces of scalar continuous functions, the topology used could be
obtained from a convenient set of weights through the following
procedure

In a given vector fibration (£;(F; x = £} there are given a vector
space of cross-sections L and a set } of weights such that for each f € L
and each v & I the function ¥[f] is upper-semicontinuous and bounded on
E. Then, for each v & ¥, the funetion || |, : L—» R defined by | /] = sup
Iwlf ). x ¢ E} for all x = E is a semi-norm on I . only the
boundedness assumption plays a role here. I is assumed filtrant in the
sense that for each vy, v, & F there are v <V and ¢ = ( such that v, (x)=
pe) for all xe B} £ = 1,2, Then (|| ||« ve#) is a filtrant family of semi-
norms on L is provided with the topology o, defined by this family.

Under the above conditions, the space (£, @) i3 denoted by LFy in
[12] and [13]. If it is further assumed that v [f] is null at infinity for each /
=1 and v £ F then L= V¥, is denoted by LV, in those papers. The
considerations in this paper show that the upper semicontinuity
assumption is a most reasonable hypothesis. Nullity at infinity was
always satisfied ; the functions v [f] we considered, implicitly or
explicitly, were always, indeed, null outside of a compact set or the
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whole domain space was itself compact. We again refer to [12] and [13]
for further details. -

Remark R, The spaces LV, and [V, described in Remark 7 are
called weighted locally convex spaces of cross-sections in [12] and [13]
We propose that they be called Nachbin spaces. Outstanding examples of
such structures are the spaces CFyE) and CF. (&) fsee [11]) introduced
by MNachbin in the course of his important work on weighted
approximation.

Some recent contributions to the study of the space CV. (£) are found
m Summers [22], [23], [24]. The vector-valued case has been studied
recently by Bierstdt @ can be studied from the viewpoint of operator-
induced topologies (see Prolla [18]). Tt should also be mentioned that the
vector space Cy (E:F) of all bounded continuous functions from the
locally compact space £ into the locally convex space & under the strict
topology [ is another important early example of a Nachbin space. This
structure was defined by R. C. Buck (see Buck [2]) and has been the
ohject of many interesting studies (see for example Collins and Dorroh
[4], Dorroh [7]) and generalizations ( see Sentilles and Taylor [19] and
Sentilles [20]).

A final word about the notion of vector fibrations. This notion goes
back to the work of von Neumann [14] (written in 1938) and Silov (see
[21]}. The general theory of such vector fibrations in the case where each
fiver is a Banach space F. with norm || and the functions
x| f(x)|, are continuous was studied by Godement (see [8] and chapter
I of [9]). The case in which F£; is a C*-algebra was treated by Dixmier
and Douvadiy [6], and the case of Frechet spaces by Cathelineau [3]. For
the connections with integration theory see Godement [9] and the
references cited on the notes and remarks for § 8 of Dinculeanu's book

{see [5], page 414).

Diefta J. Scd 20085, 20, 2 =45



dd On welarstrass-stonae ...

REFERENCES

1- K-D. &, Dactoral, Dissertation, Johannes Gutenberg, Mainz, 1870
Z. R.C. Buck, Bounded continuous functions on a locally compact space, Michigan
Math. J.. 5{1958), 95-104.

3. J-L Cathelinesu, Sur les modules topologigues, J.Math, pures et appl., 47
{1968), 13-57.

4- H.5. Collins and J,R. Dorroh, Remarks on certain function spaces, Math, Aan.,
176 (1968}, 157-168.

- N.Dineuleanu, Vector Measures, Pergamon Fress, Oxford, 1967,

- J. Dixmier and A Douady, Champs continuous d'espaces hilbertiens ot de C°-

& 4n

alge'bres, Bull, Soc. Math. France, 91 {1983), 227-284.

7= JR. Dorreh, Semigroups of maps in & inl:-ullr compact space, Canad. J. Math.,
18 [1067), GEA-GDE.

8- R, Godament, The'crie ge'ne'als des sommes continues de Banach, C.R. Acad.
Soi. Paris, 2728 [(1548), 1329-1328

0. R. Godement, Sur la theore des represenistions unitaires, Ann. of hbath.,
S52(1951), G8-124.

10- L. Nachbin, The Haar integral, The university Series in Higher Mathematics, D
van Mosirand Co., Princeton, 1966

41- L. Machbin, Elements of Approximation Theory, [ wan Hostrand Co,
Frincaton, 1967,

12- L. Machbin, 5 Machade and J.B. Prolla, Weighted approcamation, vector
fibrations and algebras of operators, J. Math. pures et appl., 50 (1971}, 283-
232,

13- L.Nachhin, 5. Machado and J.B. Prolla, Corcerning weighted approximation,
vector fibrations and algebras of Operators, J. Approximation Theory, 6 (1872),
20=88

14- J. von Meumann, On Rings of Operators. Reduction Theory, Ann. of Math,,
5041948}, 401-485,

15- J.B. Prolla, The welghted Dieudonne theorem for density in tensor products,
Indap. Math,, 33 [ 1871), 170175

18- J. B. Prolla, Waighted spaces of vector-valued continuous functions, Ann. Mat.
Fura Appl., B9 (1971), 146-158,

17- J.B. Prolla, Bishop's generalized Stone-Weierstrags theorem for weighted
spaces, Math. Ann., 181 (1571), 283-289,

18- J,B, Prolta, On operator-induced tepelogies, (to appear}.

1% F.0. Sentiles and O.C. Taylor, Factorizations in Banach algebras and the
general strict topology, Trans. Amar. Math, Sec., 142 (1968}, 141-152

20- F.0. Sentliies, The strict topelogy on bounded sets, Pacific J. Math., 34 (1870],
528-540,

21- G. Siloy, On continuous sums of finite-dimensional rings, Sbornik N.5. 27 (63)
(1850), 471-484.

272- W, H. Summars, A representation theorem for biequi-centinuosus completed
tensor products of weighted spaces, Trans. Amer. Math. Soc., 146{18968).121-
131.

23- W H. Summers, Dual spaces of weighted spaces, Trans. Amer. Math. Soc.
151 (1970), 323-333.

24- W. H Summers, The general complex bounded case of the striot weighted
approximation problem, Math. Ann, (1871), S0-84.

Detta J. Scl. 2006, 28, 21-45



Siham J. AL Senyyad 45

Alavall polall C¥gisgen Sluad Gl il b Al Jg=
Al Jike plgan
Bas = jall e clloll dnsls — pplall auE — ol Jl puud
) gt = Guliiwns dpbai dlacell pololly W Gl anday las coull Lis
gy oo iUy 580l 8508 A0 0l Ellsdl gy BEEmell dllsell (pd Alozad] oW e sneg
ladiall wilsl e 389800 Glay olf sa) | pshall clasce cAelds cealadil wall i
anilaii] il plicicl sl gl o docdll CliygSs aladed milidl sis Jia) dalally

Dwelta J. Scl. 2005, 26, 21=45



