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ABSTRACT

in this article we prove the sxislence amd uniguenass of sirong solulion
of boundary valus problem for odd-order diferantial-operefional
aqualions with variable operalional-coefficien! domains. Tha proof is
baged on an energy inequalily and the densily of he rangs of the
operator generaled by the problem.

1. INTRODUCTION
Let Q=(0,T; )( T, T )where (0,1, ) and ( [} , T Yare bounded
intarvals of values of real variable f and H be a Hilbert space with the
narm |-Lund the scalar product (+8),. On £2=( 0.7 ) (T}, T ), we
consider the following boundary- value problem
dz'"]'l-’ dhi‘ n ﬂri

W
Av=Cay4 —— €2 + % A () ——+ A= I 1.1)
¥ z”'d‘;l‘” 2 d':l_-" Eﬂ t{]d]‘i {} .Ir(} {

Hers v and f are functions of ¢ with values in the Hilbert space M|
A, (k=0)---,n) are bounded linear operators on H. A is a closed

linear operator on F with an everywhere-dense domain

1 {A) depending on {, and ¢3,,,(f) and ¢y, (f) are scalar functions

such that
1, O<t<l;, 0, Get<d,

1 f)= 5 = :
E1ne1 (1) {u. I <t<T, €5, (1) {l. P <r<T, (1.2)
The conditions impased on A(r) . is given by the inequality
(1) Re(A()w,w), 20, vwe D{A), 1=(0,7) (1.3)

and it is osatisfied for each (<{), and (he conjugale
operator A” (1) satisfies the analogous inequality.

1880 1012 = &S



2 Beindsy vaiue probism ... .

Togelher with the boundary value problem (1.1}, the following boundary
condltions must be satisfied:

k {

; d
_‘:l".r: h--[lz—_‘_"l].ll |;.._';r=il Ozk=zn 0O=lzn-]. (1.4)

)

Extra conditions are imposed on v(f)at the points of discontinuity of

Capet () @and ©5,(F): the conditions are

d'v 'l
o7 om0 = X3

raT, <0 0zi22n-1 {(1.5)

Where =7 -0 and /=T, +0 indicated limits at ¢ =[] from the left
and right respectively, and {7+ 1)} &, ;4 @ =1

V. I. Korzyuk and M. | Yurchuk [16] studied problem (1.1), with the
boundary conditions (1.4) in the special case when m=1. Two—point
boundary value problem have been investigated for differential -
operalional equations in [15-24]). Cauchy problem for threa-order
hyperbolic differential-operational equation studied in [17].The absiract
generalization of boundary value problem in the case of cylindrical
region. investigated in [18], for correspond differential hyperbolic
equation with inilial— boundary value problems studied in [15], which is
described the distribution of the linear acoustic waves in dispersion
media [11]. For the case of many-paint boundary value problem for
some differential-cperational equations, a priorl energy inegualily are
established in [2-5] and a solvabliity and properties of the solution of

many - point boundary value problem are given in [3]. Qur problem is
the study of the case of many = point boundary value problem for some
differantia-oparational equations of odd order, We shall prova that
problem (1.1}, {1.4-5) has a unique solution depending coniinuously on
the operation-valued coefficients in the eguation, the proof |s based on
an energy inequality bounds and the fact that the range K () of J is
daense, the energy inequality is proved by the slandard mathod. To
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prove that R(J) is dense we use the abstract smoothing

operalors ..-I,:' =(] +&d)”', £=0. The continuous dependence of the

solution on the coefficients is proved by using consaquences of the
Banach-Steinhaus thearem.

2. A Priori Energy Inequality and its Consequences
We next describe the notation we use and some basic resulls needed
from [2].
Let f2{J) be the set of all integrable functions v & L,(}, H), such
that
Ay 2y,

v(r) € D(A), Ave L (LH), — S eL,((0.1).H),

and v satisfies conditions (1.4} and conditions (1.5).

From (1.4), i ve&D({3), and A el (. B(H H)). then
Ivel,(Q2, H), here by B (H, H)we mean Banach space of bounded
linear operators from F to /. We write |¢] and (s,) the norm and the

scalar production in L,(€2, H),and [s]_the norm in L (2, B (H,H)).

if v satisfies the conditions (1.4), then

L kit pie-8) T, e, P

j d:- ' fi d :r &

s 1df | a (mk) |{-*!F ™

r i by T 3 G
3 2 j' ﬂ':‘ di < [1 T_} j d®v di

H alf Iy (i 4 {H‘ k) H dr® k

Where D<k<n  a’(mnk)=2n-kNin-k=1)1(2n-2k~1)
Theorem 2.1. In equation (1.1), let A (el (Q, B(H H)), and

suppase thal
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i Boundry valus problem ...

il . pan=kel
2|, —————<m+l.  0<cr<h
) (. 0) ex(m k)
o (2.2)
R

Z[ il m:l. T <t<T

Then for each v & [} (J) the following inequality holds:

T
Jot0) (@v,wyg di

My, 5 M sup = 3 - (2.3)
+(=1)" i) Re(Tw, v), ‘] df (2.4)

- M.y,
i A rmmen

and p(t)=1T 1 for 0 <1 <I.and wi{t)=1for I, <t <T.
Prool. Integrating by parts and using the boundary conditions (1.4) and

Whera

(1.5} give
diﬂll - T di-n
=12 j( P '_mhtﬂ*.;[{dmp' "o
o g 1) afvnag (2.5)
={zu+|}]ld—:1 mfzjd:' di,
o™y gl

Now integrating (—1)"2 Reyw(r) (Jv,v), over £, applying (1.1), (2.1},
(2.2) and {2.5) and making some elementary transformations, to get

ML < (-1)"My Re [ w0) (Sv,v)g di (2.8)
¥

This Inequality shows thal the operator 3 on an appropriate space
satisfles an inequality of the form (1.2). For the right side in (2.8) we
use the upper bound
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1
|_ Juiny (Sv.w)g |
| L2

. i M,

and get (2.3), this proves theorem 2.1.
Remarki. 1, Ineguality (2.3) implies the simpler bul weaker inequality

1-"ﬂ.r,.,;r_ < M3y (2.8)

(2.7}

We begin by intreducing the required spaces, let E be the solution
space. which is the completion of [X(3) In the norm [, equal
thn_ _Let F denotes the space of right side of equation (1.1).
which 1 the completion of L,(©2, H). in the norm [f], equal to the
norm

T
Jute (3v,w)o di ‘
il

lvlny-',, s M "":P —"“IEM;I:-—----—

This can be written in the form
HPI.E f.M“.".l v[F . ve DJ) (2.9)

Let T be the operator from E to F with domain [ (J) defined by
equation (1.1).

Corollary 2.1 The operator 3. E — I has a closure.

Prool. By virtue of a known criterion for operalors on Banach spaces (o

have closure, [14], it is sufficient to prove that, if DTy, »0in E
and 3w, = f in F tor k = @, then f=0.
For we ﬂ{ﬂ} c E, satisfying the boundary conditions {1.4) and (1 5)

then after integrating by parts and taking the limit the following relation
holds

T ¥
S(w) = lim J't':fv..ur W) = lim J.'ll-" Wy, W)t
e 3 = Y

The inequality
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# Boundry value problem

Re[(Awy ,prw)g +(wy, A wwg] < 2 Re(Awg, wy )y Re(Aw w, ) -

) T
Implies that 1un I{Aw*.w w),dl = !im_j (w,  Adww),dl =0,
[F [

nence f{w) =0, the set of functions w is complete in E; hence [ = 0.

Let T be the closure of . A function v E isin D (3) , if there Is a
sequence v, & /1 (J) and an element f &5 such that v, —v in E

and 3y, — f in F. Then
Jv=f=lmJv,.
L

Definition. A solution of the equation
JIv=f, fe&F (2.10)

i said fo be a strong solution of the corresponding boundary-value
problem. By taking the limit we can extend the inegquality (2.9) 1o apply
to ve [N3) thatis, -

M, M3, . veDD) 2.11)

Corollary 2.2 The range R(J) of 3 Is closed inF, R({3)= ﬁm—j
and there is a bounded inverse operator (3)' on the range of the
closunes, R{ﬁ}. This establishes thal, to prove that (1.1) with the
boundary condilions (1.4-5) has a strong solution for feF, It is
sufficient 1o prove that thel range H’f-ﬂ-}: F, ie to prove that the
range A(3J) of 3 is everywhere dense in F

1. Density of the range R({J) of 3
Let 4= (=1)" A+ A [ where A =0is an arbitrary fixed number. We use
ihe Banach space of continuous linear mappings of ihe Banach space
B, into the Banach space B, which we denote by B(B, B,)

Theoram 2.1
L)

If theorem 2.1 is salisfied, [.:r:{ Al e L (), B(H H)), O<ssn+l,
i

d* A(1)

axisl, and weNA4), ———
xi NA) =

Mr|,,.,|.,jl =0, then the range fA(J)of 3 is

densa in [
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I;]I:I

Proof. The par Z-‘ix“} =

2=0

bounded on E intoF, hence by standard method of construction by
means of a parameter we can prove thal, if the theoram holds

of the operator 33 in equalion (1.1) i5

ford, =0, it holds in the general case. Thus we precede under

assumption that 4, =0 in (1.1).

The space F is reflexive; hence, by virue of a corollary of the Hahn-
Banach theorem, we can prove that & (J) is dense in F by stablishing
that, if

f(mv ), di =0 forall v in () andall win F.(3.1)
o

Then w = (. From equation (1.1}); we gt

d...l-l I|

j(r "'!:H: “"J.;. d""j ': - “"}_3 clf = j. (P"[.I'H_-‘l' “']:.dr (3.2)

Integrating by pars and uzdng ihe boundary conditions (1.4) and (1.5)
for v and conditions (1.4) and (1.5) with 0=/ < nfor w give

d’"".r ™
& I:ﬂm—l

j {d"‘”'v d” {;r,

w
. Yo dif — {
5 P j

by dt
i3.3)

= t—}"“j {.p'{.r]{.dv,w]{, o
H

-

By applying a limit process we can prove thal this relation holds for
ve L2, Hysuch that

d™'v
dr™!
conditions (1.4) and (1.5) for0<i<n. We also nead a family of

= L0, H). vitye D(A(r)), Ave L (2, H) and v satisfies

resirictions, uniform with respect to & on the family of operators
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I (f+ed)”, 520 is a parameter and the operator A is defined

in the beginning of this section, and it is an analog of @& smoothing
operalor {or an averaging operator in another terminology). The

oparalors ..-'IF'l wera first used for smoething in [9]; they have the
following properties. If & =0 |, then .-I;'g takes values in [NA) for
each geH . f wel{A), then 44 'w=d4 Aw. The noms of

EE.-‘!;! = .-!;1 ~ | are boundad by unity unifermly with respect lo £ and

and for each ve L. (02, H)with range in D{d). we have

jnéa-l"uu=iri;'w -u"—sl} for £ — 0.

By virlug of a corollary to the Banach-Steinhaus theorem, this lirmiting
propery also holds for w e L, ({1, ) The dilferentiability properties of

A imply that the operator r-{;I' also have derivatives up to order n+1,
whose values tend to zero when £ — 0 for each wel,(L2, /). The
operators (A;')" = (/ £d")”" have the same properties.

lﬂ|--I

Putling v=A_'g in (3.3), where g e L, (L2, M), Efjiﬂ H), and

¢ satisfies conditions (1.4) and conditions (1.5) for 0= = n gives

r:i-l
jf.‘:, ==, W, )o di = (- }“*'j (WleNg, A" (A7) w)p dlt + D (g, %) (3.4)

Whera

iy @ (T = W)

Wit =1(4
(1) =(4") -

for 0<i<T,

Daita J. Sei 05, 29, 1-13
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-1
ii‘}{r}.—-—{.{;'}*% tor I, <¢t=<T, and

adl
¢51.El“':}:"_z{-'-:!l[ ‘ { .

II;tl.lllﬂ.—.r - " {3 )
[ @A 4T
. i d;n-ﬂ-- g tﬂ':1

d
It follows that |ﬂlh.{g1w]'|'£l"{ﬁ.w]v "

fn - pence (3.4) implies thal

the mapping
T sl r
d"g 4™'g d d"g
—_— —F —= W)y, = ——=1LF )y dlr
= !,{ﬁrr*" Y Ju{*“ i

is a continuous linear functional, where ‘—:E_;E satisfies the following

conditions
d"g, d" d'g
g =0 "

and form a set whose closure in L.(Q2, H) Is orhogonal to the

i=f, -0 = & t=; 40
funclions

S . r-n* et <T,
pin) = 2w (0, where 4 (= ' ) :

LB Ik*‘]}l’l’z_‘_[‘.lﬂ_}ﬂ'--ﬂ] ]_! !:.I'!:T
and , are arbitrary elements of H . From [6,22] we therefore can clude
that #_is In the domain of the family of operalor conjugate to the

. i
operator generated by Lhe differential expression ? defined on 12,
s

with the boundary conditions

Dl J, e, 2006, 29, 1-12



10 Boundry velue problem

Hl‘-i T ﬂ' 'qu..r..-:- =, 'lr|1-.rl+n i

and orthogonal conditions (k) = 0, hence

dW, 1
_E € L;{RHJ and ¥, |:.|;r =0, H'IIr =g-0 = E_:wf AL

Integrating by parts in the left side of (3.4), therefore yields

T
[.[E’.fﬂ Sy di =M [pg, 44 Wy di+ 0, g ). (B9
]

By applying a limiting process we extend (38) 1o

functions g € L,(€2, H). such that l:::!r—fE}Lil[ﬂj-!f}'r and g satisfies

condition {1.4) and {1.5) containing derivatives up to the (n-1)" order,
wa naxt pul g = [.-If‘ ) w in (3.8), after which tha lefl side of the relation

T 4{ dt
o (3.7)

{A;'rﬂl dt— By (w, )
dr® |

becomes

T

o 2: T

] '| | lﬂ'l'l
o d.r'mitﬂ'.— 2 ;l:
i
‘]

a

whera "1'1{ (w,w) =0 for £ —» 0, and the real part of the first lerm in

the right side is nonpositive by virtue of {1.2). Now using (3.8), we

oblain
ﬁ'" 2
uta;'f ?:,! <@, (w,w)+Re® ((4,") w,w).
T

Since @, ((A;')" w,w) -0 tor & -0, the limit of (3.7) far & — 0 is

0. Hence w =0 and R(3J) is dense,

Dt 2 fcl 2008, 25. 1-13
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4. The Continuous Dependence of a Solution on Operators-Valued

Cosfficients
We now prove that the solutions of (1.1} and {1.4-5) depend

continuously on A () andA{(f). Consider sequences of
operators A (f), {=1, and assume that for eachi, the operator A
salisties conditions of theorem 3.1, We also introduce operator A,
satisfying the conditions of theorem 3.1 and such that D(4,) < D(4)).

Let A, be a sequence of bounded linear operators. Consider the

following sequence of differential-operational expression.

P d™ = v
A vm ey ——t Oy ===+ F Ay )=+ A4y, P2l (4.1)
T T E.;. i b

And let (3 ) be the domaln of 3, defined as in the case of the
domain D(X)of T but with 4 and A, replaced by A, and A, ;. Let

the space E, be the completion of the set D(J,) in the norm v, .

defined to be equal to [v| . . completing the set L,(£2, H)in the

| (9w

norm ﬂf|ﬁ = sup = . we obtain the space F, , we write 3,

L .
for the closure of.the operator 3 :E —F and E° and F° for
spaces n::uined from E, and F, when A4 =0. The imbedding E, = E’
and F° © F hold together with the topologies and

Phesh-  171g SIS/ bes 2
Theorem 3.1 implies thalﬁj '"e B(F .E,), the space of all continues

linear mapping of Banach space E, into Banach space ', and the

Ddta J. Sen. 2005, 24, 1-13



12 Boundry alus problem .
imbedding imply that(3,)" € BF",E"), ie. ¥ =3y 'rek’
tor f & F"
Theorem 4.1 If the operators A(f) and A (f), i =0 satisfies the
conditions of theorem 3.1, /NA,)c D{A) operators A, (f)converge
pointwise 1o A, . and

|Aw-dw]—>0asi—swm for we D{3_ )<= D(3,). (4.3)
Then Jvi—vo|pe =0 (4.4)

Praaof,

Relation (4.4) implies that the operators () ' converge pointwise to
E] ' in the space of all continues linear mapping of Banach space

E® into Banach space F¥ B(F°.E"). By virue of a corollary of the

Banach-Steinhaus Theorem, (4.4) will hold if the following iwo
condifions are satisfied;

1. :mp” [ﬁ;}" £ a0

2. {E} ] ;;—r{ﬁr',-] 'g for ge(, where ( Is a dense sel In
fu-:'
The first condition is satisfied by virue of the inequalities
F l < 1 1
Ivlg, << .f||F. (4.5)

This can be proved in the same fashion as (3.4) and Inequalities (4.2).

To verify thal the second condition is satisfied, we put G = R(3,). and

established that for f < R{3J,), we have

G r-GE's

o 0 (4.6)

Dwhia J. So 2008, 29, 1-13
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it f e RD,), then (3,)" £=(3,)" f=ge DI IN3,); nence,
in the light of (4.5) and (4.2)

— — . e | — ]
|Gy 7-@0 7|, s/ -Goe|, =¢]3.2-5 4],
il follows from conditions Theoram 4.1 thal itha rlghl side of this
inequality tends to zero; hence (4.8) holds and this proves theorem 4.1.
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