1. ON STRONGLY $F_{\alpha^{+}}$-IRRESOLUTE MAPPINGS

R. K. SARAFA & R. K. POURANIK

Department of Mathematics, Govt. K.N.M. Darmoh(M.P.), H0661, INDIA
Department of Mathematics, Dr. V. L.M. College Darmoh(M.P.), 470061, INDIA

(Received: 7-3-2009)

ABSTRACT: The aim of this paper is to introduce a new class of mappings called strongly $F_{\alpha^{+}}$- irresolute mapping, its characteristic properties, examples and composition with other mappings are studied.

Keywords: F_{α}-open, F_{α}-open, fuzzy topological space, st-F_{α}- irresolute mapping.

1. INTRODUCTION

In this paper, we introduce a new class of mapping called st-F_{α} - irresolute mapping. In section 2 some examples and characterizations of new mappings are examined. In section 3 the composition of st-F_{α} - irresolute mapping with other fuzzy mappings are studied.

The concept fuzzy has invaded almost all branches of mathematics, since the introduction of the concept of fuzzy sets by Zadeh [15]. The theory of fuzzy topological spaces was introduced and developed by Chang [4] and since then various notions in classical topology has been extended to fuzzy topological spaces. Our motivation in this paper is to define strongly $F_{\alpha^{+}}$- irresolute mappings and investigate its properties. The newly defined class of mapping is stronger then M-fuzzy β-continuous mapping and is a generalization of strongly F_{α}- irresolute mapping.

Throughout this note, spaces, always mean fuzzy topological spaces and $f : X \rightarrow Y$ denotes a mapping of a space X into a space Y. Let A be a fuzzy subset of a space X. The closure and the interior of a fuzzy set A are denoted by $Cl (A)$ and $Int (A)$ respectively. The notation and terminologies not explained in this paper may be found in [6]. Definitions and results which will be needed in this paper, are recalled here:

DEFINITION 1.1 Let A be a fuzzy subset in a space X

(a) A is called :

(i) Fuzzy α-open [3] (shortly F_{α}-open) iff $A \subseteq \text{Int} (\text{Cl} (\text{Int} (A)))$.

(ii) Fuzzy semi open [1] (shortly F_{s}-open) iff $A \subseteq \text{Cl} (\text{Int} (A))$.

(iii) Fuzzy pre-open [3] (shortly F_{p}-open) iff $A \subseteq \text{Int} (\text{Cl} (A))$.

17
(iv) Fuzzy β-open [5] (shortly F_{p}-open) iff $A \subseteq \text{Cl} (\text{Int} (\text{Cl} (A)))$.

The complement of these sets are respectively called F_{c}-closed (resp. F_{c}-closed, F_{p}-closed).

(b) The fuzzy pre-interior [12] (resp. fuzzy β-interior [2]) of A, denoted by

$\text{pint}(A)$ (resp. $\text{pint}(A)$) is the union of all F_{p}-open (resp. F_{c}-open) subsets contained in A.

(ii) The fuzzy pre closure[12] (resp. fuzzy β-closure [2]) of A, denoted by $p\text{Cl}$

A (resp. $[\text{Cl}(A)$) is the intersection of all F_{p}-Closed (resp. F_{c}-closed) subsets containing A.

(c) Let $f : X \to Y$ be mapping. Then f is called:

(i) Strongly fuzzy α pre irresolute [11] (shortly st- F_{p}-α irresolute) if $f^{-1}(A)$ is F_{p}-open in X, for every F_{p}-open set A of Y.

(ii) M-fuzzy β-continuous[10](shortly M- F_{p}-continuous)if $f^{-1}(A)$ is F_{p}-open in X, for every F_{p}-open set A of Y.

(iii) Fuzzy irresolute [6] iff $f^{-1}(A)$ is a fuzzy semi-open subset of X, for each fuzzy semi-open subset A of Y.

(iv) A fuzzy strongly continuous function [7] iff $f^{-1}(A)$ is fuzzy clopen in X, for every fuzzy subset A in Y.

DEFINITION 1.2: A fuzzy point x_{i} is said to be quasi-coincident with a fuzzy set A in X if $f + A (x) > 1$. A fuzzy set A in X is said to be quasi-coincident with a fuzzy set B in X, denoted by $A \# B$. If there exists a point x in X such that $A (x) = B (x) > 1$ [9].

LEMMA 1.1: Let $f : X \to Y$ be a mapping and x_{i} be a fuzzy point of X. Then

(i) $f(x_{i}) \# B \Rightarrow x_{i}, f^{-1}(B)$, for every fuzzy set B of Y.

(ii) $x_{i} \# A \Rightarrow f(x_{i}) \# A$, for every fuzzy set A of X. [14].

2. STRONGLY F_{s}-IRRESOLUTE MAPPING:

In this section we introduce a new class of mapping, called strongly F_{s}-α irresolute mapping, some examples and characterizations are also examined.

DEFINITION 2.1: A mapping $f : X \to Y$ is said to be strongly fuzzy semi-β- irresolute (shortly st- F_{s}-irresolute) if $f^{-1}(A)$ is F_{s}-open in X, for every F_{s}-open set A of Y.

Equivalently we may say that f is st- F_{s}-α irresolute, iff $f^{-1}(A)$ is F_{s}-closed in X, for every F_{s}-closed set A of Y.

18
REMARK 2.1: Every strongly F_{st}- irresolute mapping is st-F_{st}- irresolute and every st-F_{st}- irresolute mapping is M-β-continuous but the converse may not be true in general. For,

EXAMPLE 2.1: Let $X = \{a, b\}$ and $Y = \{x, y\}$. Fuzzy sets A, B and H are defined as:

$A(a) = 0.5, A(b) = 0.5; B(x) = 0.6, B(y) = 0.2; H(x) = 0.7, H(y) = 0.7$; Let $\beta = \{0, A, B\}$ and $\alpha = \{0, B, I\}$. Then the mapping $f: (X, \beta) \rightarrow (Y, \alpha)$ defined by $f(a) = x$ and $f(b) = y$ is st-F_{st}- irresolute but not st-F_{st}- irresolute, because H is F_{st}-open in Y, but $f^{-1}(H)$ is not F_{st}-open in X.

EXAMPLE 2.2: In example 2.1, if we take $A(a) = 0.4, A(b) = 0.4$ then the mapping $f: (X, \beta) \rightarrow (Y, \alpha)$ is M-μ-continuous but not st-F_{st}-irresolute, because H is F_{st}-open in Y, but $f^{-1}(H)$ is not F_{st}-open in X.

THEOREM 2.1: For mapping $f: X \rightarrow Y$, the following are equivalent:

(a) f is st-F_{st}- irresolute;

(b) For every fuzzy point x_i of X and every F_{β}-open set V of Y containing $f(x_i)$, there exists a F_{α}-open set U of X containing x_i such that $f(U) \subseteq V$;

(c) For every fuzzy point x_i of X and every F_{β}-open set V of Y containing $f(x_i)$, there exists a F_{α}-open set U of X such that $x_i \in U \subseteq f^{-1}(V)$;

(d) For every fuzzy point x_i of X, the inverse image of each fuzzy β-neighbourhood of $f(x_i)$ is fuzzy semi-neighbourhood of x_i;

(e) For every fuzzy point x_i of X and each fuzzy β-neighbourhood E of $f(x_i)$, there exists a fuzzy semi-neighbourhood A of x_i such that $f(A) \subseteq E$;

(f) $f^{-1}(V) \subseteq Cl(Int(f^{-1}(V)))$ for every fuzzy β-open set V of Y;

(g) $f^{-1}(H)$ is F_{α}-closed in X. For every F_{β}-closed set H of Y;

(h) $Int(Cl(f^{-1}(E))) \subseteq f^{-1}(Int(Cl(E)))$. For every fuzzy subset E of Y;

(i) $Int(Cl(f^{-1}(\alpha))) \subseteq f^{-1}(Int(Cl(\beta)))$ for every fuzzy subset α of X.

PROOF: (a) \iff (b) \iff (c) \iff (d) \iff (e) Obvious.

(b) \Rightarrow (f): Let V be any F_{β}-open set of Y and $x_i \in f^{-1}(V)$. By (b) there exists a F_{α}-open set U of X containing x_i such that $f(U) \subseteq V$. Thus we have $x_i \in U \subseteq Cl(Int(U)) \subseteq Cl(Int(f^{-1}(V)))$ and hence $f^{-1}(V) \subseteq Cl(Int(f^{-1}(V)))$.

(f) \Rightarrow (g): Let H be any F_{β}-closed set of Y. Set $V = Y - H$, then V is F_{β}-open in Y. By (f), we obtain $f^{-1}(V) \subseteq Cl(Int(f^{-1}(V)))$ and hence $f^{-1}(H) = X - f^{-1}(Y - H) = X - f^{-1}(V)$ is F_{α}-closed in X.

(g) \Rightarrow (h): Let E be any fuzzy set of Y. Since $f^{-1}(E)$ is F_{β}-closed subset of Y, $f^{-1}(Int(Cl(f^{-1}(E)))) \subseteq f^{-1}(Int(Cl(E)))$. Therefore we obtain $Int(Cl(f^{-1}(E))) \subseteq f^{-1}(Int(Cl(E)))$.
(h) \Rightarrow (i): Let A be any fuzzy subset of X. By (h) we have $\text{int} \left(\text{Cl} (A) \right) \subseteq \text{int} \left(\text{Cl} (f^{-1} (f(A))) \right) \subseteq f^{-1} \left(\text{Cl} (f(A)) \right)$ and hence $f (\text{int} \left(\text{Cl} (A) \right)) \subseteq \text{Cl} (f(A))$.

(i) \Rightarrow (a): Let V be any F_2-open set of Y. Since $f^{-1}(Y - V) = X - f^{-1}(V)$ is fuzzy subset of X and by (i), we obtain $f (\text{int} \left(\text{Cl} (f^{-1}(Y - V)) \right)) \subseteq \text{Cl} (f(f^{-1}(Y - V))) \subseteq \text{Cl} (Y - V)$ and hence $X - \text{Cl} (f^{-1}(Y - V)) = f^{-1}(Y - V)$. Therefore, we have $f^{-1}(Y - V) \subseteq \text{Cl} (f(f^{-1}(Y - V)))$ and hence $f^{-1}(V)$ is F_2-open in X. Thus, f is at least F_{20}- irresolute.

(a) \Rightarrow (d): Let x_i be fuzzy point in X and V be β-neighbourhood of $f(x_i)$ then there exists a F_2-open set G in Y such that $f(x_i) \in G \subseteq V$. Now $f^{-1}(G)$ is F_2-open in X and $x_i \in f^{-1}(G) \subseteq f^{-1}(V)$. Thus $f^{-1}(V)$ is fuzzy semi-neighbourhood of x_i in X.

(b) \Rightarrow (b): Let x_i be a fuzzy point in X and V be any F_2-open in Y such that $f(x_i) \in V$. Then V is fuzzy β-nebd of $f(x_i)$, so there exists a fuzzy semi-neighbourhood A of x_i such that $x_i \in A$ and $f(A) \subseteq V$. Hence there exists F_2-open set U of X such that $x_i \in U \subseteq A$ and $f(U) \subseteq f(A) \subseteq V$.

THEOREM 2.2: For a mapping $f: X \rightarrow Y$ following are equivalent:

(a) f is at least F_{20}- irresolute;

(b) For each fuzzy point x_i of X, and every F_2-open set E of Y such that $f(x_i) \in E$, there exists F_2-open set A of X such that $x_i \in A$ and $f(A) \subseteq E$;

(c) For every fuzzy point x_i of X and every F_2-open set E of Y, such that $f(x_i) \in E$, there exists F_2-open set A of X such that $x_i \in A$ and $f(A) \subseteq E$.

PROOF: (a) \Rightarrow (b): Let x_i be fuzzy point of X and E be F_2-open set of Y such that $f(x_i) \in E$. Then $f^{-1}(E)$ is F_2-open in X and $x_i \in f^{-1}(E)$, by Lemma 1.1. If we take $A = f^{-1}(E)$ then $x_i \in A$ and $f(A) \subseteq E$.

(b) \Rightarrow (c): Let x_i be a fuzzy point in X and E be F_2-open in Y such that $f(x_i) \in E$. Then by (b), there exists F_2-open set A in X such that $x_i \in A$ and $f(A) \subseteq E$. Hence $x_i \in A$ and $f(A) \subseteq E$.

(c) \Rightarrow (a): Let E be any F_2-open in Y and x_i be a fuzzy point in X such that $x_i \in f^{-1}(E)$. Then $f(x_i) \in E$. Choose the fuzzy point $x_i^* \in (x_i \in f^{-1}(E))$ and so by (c), there exist F_2-open set A of X such that $(x_i^*) \in A$ and $f(A) \subseteq E$. Now $(x_i^*) \subseteq A \Rightarrow x_i^* \in A$. Thus $x_i \in f^{-1}(E)$. Hence $f^{-1}(E)$ is F_2-open in X.

LEMMA 2.1: Let $g: X \rightarrow X \times Y$ be the graph of a mapping $f: X \rightarrow Y$. If A is fuzzy set of X and B is fuzzy set of Y, then $g^{-1}(A \times B) = A \times f^{-1}(B)$ [1].
THEOREM 2.3: If: \(f: X \to Y \) be a mapping. If the graph mapping \(g: X \to X \times Y \) of \(f \) is st\(-\text{F}_{\alpha \beta} \)- irresolute, then \(f \) is st\(-\text{F}_{\alpha \beta} \)- irresolute.

Proof: Let \(A \) be any \(\text{F}_{\alpha \beta} \)-open set of \(Y \), then by lemma 2.1, \(f^{-1}(A) = 1 \cap f^{-1}(A) \cap g^{-1}(I \times A) \). Since \(A \) is \(\text{F}_{\alpha \beta} \)-open in \(Y \), \(I \times A \) is \(\text{F}_{\alpha \beta} \)-open in \(X \times Y \). Since \(g \) is st\(-\text{F}_{\alpha \beta} \)- irresolute, \(g^{-1}(I \times A) \) is \(\text{F}_{\alpha \beta} \)-open in \(X \) and consequently \(f \) is st\(-\text{F}_{\alpha \beta} \)- irresolute.

3. COMPOSITIONS OF ST\(-\text{F}_{\alpha \beta} \)-IRRESOLUTE MAPPINGS

In this section the composition of st\(-\text{F}_{\alpha \beta} \)- irresolute mappings with other fuzzy mappings are studied.

THEOREM 3.1: If \(f: X \to Y \) is st\(-\text{F}_{\alpha \beta} \)-irresolute and \(g: Y \to Z \) is M fuzzy \(\beta \)-continuous, then \(\text{gof}: X \to Z \) is st\(-\text{F}_{\alpha \beta} \)-irresolute.

COROLLARY 3.1: The composition of two st\(-\text{F}_{\alpha \beta} \)-irresolute mappings is st\(-\text{F}_{\alpha \beta} \)-irresolute.

COROLLARY 3.2: If \(f: X \to Y \) is fuzzy strongly continuous and \(g: Y \to Z \) is st\(-\text{F}_{\alpha \beta} \)- irresolute, then \(\text{gof}: X \to Z \) is st\(-\text{F}_{\alpha \beta} \)- irreolute.

THEOREM 3.2: If \(f: X \to Y \) is fuzzy irresolute and \(g: Y \to Z \) is st\(-\text{F}_{\alpha \beta} \)- irresolute, then \(\text{gof}: X \to Z \) is st\(-\text{F}_{\alpha \beta} \)- irresolute.

THEOREM 3.3: Let \(P_i \) be projection function from \(I \times X \), onto \(X \), then if \(f: X \to I \times X \) is st\(-\text{F}_{\alpha \beta} \)- irresolute, then \(P_i f \) is st\(-\text{F}_{\alpha \beta} \)- irresolute for each \(i \in I \).

PROOF: Let \(V_i \) be any \(\text{F}_{\alpha \beta} \)-open set of \(X \). Since \(P_i \) is fuzzy continuous and fuzzy open, it is M-fuzzy \(\beta \)-continuous and hence \(P_i^{-1}(V_i) \) is \(\text{F}_{\alpha \beta} \)-open in \(I \times X \). Since \(f \) is st\(-\text{F}_{\alpha \beta} \)- irresolute, \(f^{-1}(P_i^{-1}(V_i)) = (P_i f)^{-1}(V_i) \) is \(\text{F}_{\alpha \beta} \)-open in \(X \). Hence \(P_i f \) is st\(-\text{F}_{\alpha \beta} \)- irresolute for each \(i \in I \).

REFERENCES