Delta J. Sci. 2009, 33: 10-15 MATHEMATICS # 1. ON STRONGLY FSB-IRRESOLUTE MAPPINGS #### R. K. SARAF & R. K. POURANIK * Department of Mathematics, Govt.K.N.M. Damoh(M.P.)470661, INDIA Department of Mathematics, Dr. V. L.M. College Damoh(M.P.) 470661, INDIA (Received: 7-9-2009) **ABSTRACT:** The aim of this paper is to introduce a new class of mappings called strongly $F_{S\beta}$ - irresolute mapping. Its characteristic properties, examples and composition with other mappings are studied. Keywords: F_S -open, F_β - open, fuzzy topological space, st- $F_{S\beta}$ irresolute mapping. 2000 Math subject classification: 54A40, 54C10, 54D10. #### 1. INTRODUCTION In this paper, we introduce a new class of mapping called st- $F_{S\beta}$ - irresolute mapping. In section 2 some examples and characterizations of new mappings are examined. In section 3 the composition of st- $F_{S\beta}$ - irresolute mapping with other fuzzy mappings are studied. The concept fuzzy has invaded almost all branches of mathematics, since the introduction of the concept of fuzzy sets by Zadeh [15]. The theory of fuzzy topological spaces was introduced and developed by Chang [4] and since then various notions in classical topology has been extended to fuzzy topological spaces. Our motivation in this paper is to define strongly $F_{s\beta^-}$ irresolute mappings and investigate its properties The newly defined class of mapping is stronger then M-fuzzy β -continuos mapping and is a generalization of strongly $F_{\alpha\beta^-}$ irresolute mapping. Throughout this note, spaces, always mean fuzzy topological spaces and f: X Y denotes a mapping of a space X into a space Y. Let A be a fuzzy subset of a space X. The closure and the interior of a fuzzy set A are denoted by CI (A) and Int (A) respectively. The notation and terminologies not explained in this paper may be found in [9]. Definitions and results. which will be needed in this paper, are recalled here: ### **DEFINITION 1.1** Let A be a fuzzy subset in a space X - (a) A is called: - (i) Fuzzy α -open [3] (shortly F_{α} -open) iff $A \leq Int$ (CI (Int (A))). - (ii) Fuzzy semi open [1] (shortly Fs open) iff $A \le CI$ (Int (A)). - (iii) Fuzzy pre-open [3] (shortly Fp -open) iff $A \leq Int (CI (A))$. - (iv) Fuzzy β -open [5] (shortly F_{β} -open) iff $A \leq CI$ (Int (CI (A))). The complement of these sets are respectively called F_{α} closed (resp. Fs- closed, Fp- closed, F_{β} -closed). - (b) (i) The fuzzy pre- interior [12] (resp. fuzzy β -interior [2]) of A, denoted by plnt (A) (resp. β Int (A)) is the union of all F_p -open (resp. F_β -open) subsets contained in A. - (ii) The fuzzy pre closure[12] (resp. fuzzy β -closure [2]) of A, denoted by pCl (A) (resp. β Cl (A)) is the intersection of all F_{ρ} Closed (resp. F_{β} -closed) subsets containing A. - (c) Let $f: X \to Y$ be mapping. Then f is called: - (i) Strongly fuzzy α pre irresolute [11] (shortly st- $F_{\alpha p}$ irresolute) if $f^{-1}(A)$ is F_{α} -open in X, for every F_{β} -open set A of Y. - (ii) M-fuzzy β -continuous[10](shortly M- F_{β} -continuos)if $f^{-1}(A)$ is F_{β} -open in X, for every F_{β} -open set A of Y). - (iii) Fuzzy irresolute [6] iff f⁻¹(A) is a fuzzy semi-open subset of X, for each fuzzy semi open subset A of Y. - (iv) A fuzzy strongly continuous function [7] iff f⁻¹(A) is fuzzy clopen in X, for every fuzzy subset A in Y. **DEFINITION 1.2**: A fuzzy point x_t is said to be quasi-coincident with a fuzzy set A in X if t + A(x) > 1. A fuzzy set A in X is said to be quasi-coincident with a fuzzy set B in X, denoted by AgB. If there exists a point x in X such that A(x) + B(x) > 1. [9]. **LEMMA 1.1:** Let $f: X \to Y$ be a mapping and x_t be a fuzzy point of X. Then - (i) $f(x_t) \neq B \implies x_t \neq f^{-1}(B)$, for every fuzzy set B of Y. - (ii) $x_t \neq A = f(x_t)_q f(A)$, for every fuzzy set A of X. [14]. # 2. STRONGLY F_{sβ} -IRRESOLUTE MAPPING: In this section we introduce a new class of mapping, called strongly $F_{s\beta}$ -irresolute mapping, some examples and characterizations are also examined. **DEFINITION 2.1**: A mapping $f: X \rightarrow Y$ is said to be strongly fuzzy semi - β - irresolute (shortly st - $F_{s\beta}$ -irresolute) if $f^{-1}(A)$ is Fs-open in X, for every F_{β} -open set A of Y. Equivalently we may say that f is st- $F_{s\beta}$ -irresolute, iff $f^{-1}(A)$ is F_s -closed in X, for every F_{β} -closed set A of Y. **REMARK 2.1**: Every strongly $F_{\alpha\rho}$ -irresolute mapping is st- $F_{s\beta}$ -irresolute and every st- $F_{s\beta}$ - irresolute mapping is M- F_{β} -continuous but the converse may not be true in general. For, **EXAMPLE 2.1**:Let X = {a, b} and Y = {x, y}. Fuzzy sets A, B and H are defined as: A (a) = 0.5, A (b) = 0.5; B (x) = 0.6, B(y) = 0.2; H(x) = 0.7, H(y) = 0.7; Let τ = {0, A, I} and σ = {0, B, I}. Then the mapping f: (X, Y) \rightarrow (Y, σ) defined by f (a) = x and f (b) = y is st-F_{s\beta}-irresolute but not st-F_{\alpha\beta}-irresolute, because H is F_{\beta}-open in Y, but f -(H) is not F\alpha-open in X. **EXAMPLE 2.2:** In example 2.1, if we take A (a) = 0.4, A (b) = 0.4 then the mapping f: $(X, \tau) \to (Y, \sigma)$ is M-fuzzy β -continuous but not st-F_{s β}-irresolute, because H is F_{β}-open in Y, but f⁻¹ (H) is not F_s-open in X. THEOREM 2.1: For mapping f: X \rightarrow Y, the following are equivalent: - (a) f is st- F_{sB} -irresolute; - (b) For every fuzzy point x_t of X and every $F\beta$ -open set V of Y containing $f(x_t)$, there exists a Fs-open set U of X containing x_t st. $f(U) \le V$; - (c) For every fuzzy point x_t of X and every F_β -open set V of Y containing $f(x_t)$, there exists a Fs- open set U of X such that $x \in U \le f^{-1}(V)$; - (d) For every fuzzy point x_t of X, the inverse image of each fuzzy β neighbourhood of f (x_t), is fuzzy semi-neighbourhood of x_t ; - (e) For every fuzzy point x_t of X and each fuzzy β neighbourhood E of $f(x_t)$, there exists a fuzzy semi-neighbourhood A of x_t such that $f(A) \leq E$; - (f) $f^{-1}(V) \le CI (Int (f^{-1}(V)) \text{ for every fuzzy } \beta\text{-open set } V \text{ of } Y;$ - (g) $f^{-1}(H)$ is Fs- closed in X, For every F β -closed set H of Y; - (h) Int (CI ($f^{-1}(E)$)) $\leq f^{-1}(\beta CI (E))$, For every fuzzy subset E of Y; - (i) $f\left(\text{Int}\left(\text{CI}\left(A\right)\right)\right) \leq \beta \text{CI}\left(f\left(A\right)\right) \text{ for every fuzzy subset A of X}.$ **PROOF**: (a) <=> (b) <=> (c); (d) => (e): Obvious. - (f) => (g) : Let H be any F_{β} -closed set of Y. Set V = Y H, then V is F_{β} open in Y. By (f) , we obtain f^{-1} (V) \leq CI (Int (f^{-1} (V))) and hence f^{-1} (H) = X f^{-1} (Y H) = X f^{-1} (V) is Fs-closed in X. - (g) => (h) : Let E be any fuzzy set of Y. Since β Cl (E) is F_{β} Closed subset of Y, f^{-1} (β Cl (E)) is Fs–Closed in X and hence Int (Cl ($f^{-1}(\beta$ Cl (E)))) $\leq f^{-1}$ (β Cl (E)). Therefore we obtain Int (Cl ($f^{-1}(E)$)) $\leq f^{-1}$ (β Cl (E)). - (h) => (i) : Let A be any fuzzy subset of X . By (h) we have Int (CI (A) \leq Int (CI (f⁻¹ (f (A)))) \leq f⁻¹ (β CI (f (A))) and hence f (Int (CI (A))) \leq β CI (f (A)). - (i) =>(a) : Let V be any F_β -open set of Y. since $f^{-1}(Y-V)=X-f^{-1}(V)$ is fuzzy subset of X and by (i), we obtain f (Int (CI $(f^{-1}(Y-V)))$) $\leq \beta$ CI $(f(f^{-1}(Y-V)))$ $\leq \beta$ CI $(Y-V)=Y-\beta$ Int (V)=Y-V and hence X-(CI (Int $(f^{-1}(V)))=Int$ (CI $(X-f^{-1}(V)))=Int$ (CI $(f^{-1}(Y-V)))\leq f^{-1}$ (f (Int (CI $(f^{-1}(Y-V))))\leq f^{-1}$ (Y). Therefore, we have $f^{-1}(V)\leq CI$ (Int $(f^{-1}(V))$) and hence $f^{-1}(V)$ is Fsopen in X. Thus, f is st $F_{s\beta}$ -irresolute. - (a) => (d) Let x_t be fuzzy point in X and V be β neighbourhood of $f(x_t)$ then there exists a F_β -open set G in Y such that $f(x_t) \in G \leq V$. Now $f^{-1}(G)$ is Fs-open in X and $x_t \in f^{-1}(G) \leq f^{-1}(V)$. Thus $f^{-1}(V)$ is fuzzy semi neighbourhood of x_t in X. - (e) => (b) Let x_t be a fuzzy point in X and V be any F_β -open in Y such that $f(x_t) \in V$. Then V is fuzzy β -nbd of $f(x_t)$, so there exists a fuzzy semi neighbourhood A of x_t such that $x_t \in A$ and $f(A) \leq V$. Hence there exist Fs-open set U of X such that $x_t \in U \leq A$ and $f(U) \leq f(A) \leq V$. **THEOREM 2.2:** For a mapping f: X→ Y following are equivalent; - (a) f is st- F_{sβ} irresolute; - (b) For each fuzzy point x_t of X, and every F_β -open set E of Y such that $f(x_t) \neq E$, there exist Fs-open set A of X such that $x_t \neq A$ and $f(A) \leq E$; - (c) For every fuzzy point x_t of X and every F_β -open set E of Y, such that , $f(x_t)$ q E , there exist Fs open set A of X such that x_t q A and A \leq $f^{-1}(E)$; **PROOF**: (a) => (b): Let x_t be fuzzy point of X and E be F_β -open set of Y such that $f(x_t) \neq E$. Then $f^{-1}(E)$ is Fs-open in X and $x_t \neq f^{-1}(E)$, by Lemma 1.1. If we take $A = f^{-1}(E)$ then $x_t \neq A$ and $A = f^{-1}(f(E)) \leq E$. - (b) => (c) : Let x_t be a fuzzy point in X and E be F_β -open in Y such that $f(x_t)qE$. Then by (b), there exists Fs-open set A in X such that x_t qA and $f(A) \le E$. Hence x_t q A and $A \le f^{-1}(f(A)) \le f^{-1}(E)$. - (c) => (a) : Let E be any F_{β} -open in Y and x_t be a fuzzy point in X such that $x_t \in f^{-1}(E)$. Then $f(x_t) \in E$. Choose the fuzzy point $x_t^c(x) = 1 x_t(x)$. Then $f(x_t^c) \neq E$ and so by (c), there exist Fs-open set A of X such that $(x_t^c) \neq A$ and $f(A) \leq E$. Now $(x_t^c) \neq A => x_t^c(x) + A(x) = I x_t(x) + A(x) > 1$. It follows that $x_t \in A$. Thus $x_t \in A \leq f^{-1}(E)$. Hence $f^{-1}(E)$ is Fs-open in X. **LEMMA 2.1:** Let $g: X \to X \times Y$ be the graph of a mapping $f: X \to Y$. If A is fuzzy set of X and B is fuzzy set of Y, then $g^{-1}(A \times B) = A \cap f^{-1}(B)$.[1]. **THEOREM 2.3:** $f: X \to Y$ be a mapping. If the graph mapping $g: X \to X \times Y$ of f is st $-Fs_{\beta}$ -irresolute, then f is st- Fs_{β} -irresolute. **Proof**: Let A be any F_{β} - open set of Y, then by lemma 2.1, $f^{-1}(A) = 1 \cap f^{-1}(A) = g^{-1}$ (I \times A). Since A is F_{β} open in Y, 1 \times A is F_{β} -open in X \times Y. Since g is st -Fs $_{\beta}$ -irresolute, g^{-1} (I \times A) is -Fs open in X and consequently f is st-Fs $_{\beta}$ -irresolute. ## 3. COMPOSITIONS OF ST -FSB-IRRESOLUTE MAPPINGS In this section the composition of st- $F_{S\beta}$ irresolute mappings with other fuzzy mappings are studied. **THEOREM 3.1**: If $f: X \to Y$ is st - $F_{s\beta}$ -irresolute and $g: Y \to Z$ is M fuzzy β -continuous, then gof: $X \to Z$ is st - $F_{s\beta}$ -irresolute. **COROLLARY 3.1**: The composition of two st $-F_{s\beta}$ -irresolute mapping is st- $F_{s\beta}$ -irresolute. **COROLLARY 3.2 :** If $f: X \rightarrow Y$ is fuzzy strongly continuous and $g: Y \rightarrow Z$ is st $F_{s\beta}$ -irresolute, then gof: $X \rightarrow Z$ is st - $F_{s\beta}$ -irresolute. **THEOREM 3.2:** If $f: X \to Y$ is fuzzy irresolute and $g: Y \to Z$ is st-F_{s\beta}-irresolute, then $aof: X \to Z$ is st-F_{s\beta}- irresolute. **THEOREM 3.3**: Let P_i be projection function from ΠX_i onto X_i , then if $.f: X \to \Pi x_i$ is st- $F_{s\beta}$ -irresolute, so is P_i of for each $i \in \land$. **PROOF:** Let V_i be any F_β -open set of X_i . Since P_i is fuzzy continuous and fuzzy open, it is M-fuzzy β -continuous and hence $P_i^{-1}(V_i)$ is F_β -open in Π X_i . Since f_i is st- $F_{s\beta}$ -irresolute, $f_i^{-1}(V_i)=(P_i\circ f)_i^{-1}(V_i)$ is Fs-open in X. Hence is $P_i\circ f$ st- $F_{s\beta}$ -irresolute for each $i\in A$. #### REFERENCES - [1] Azad K. K.: On fuzzy semi continuity, Almost continuity and fuzzy weakly continuity; J. Math. Anal. Appl., 82 (1981) 14-32. - [2] Balasubramanian G: Fuzzy β -open sets and fuzzy β -separation axioms; Kybernetica, 35 (1991) 215-223. - [3] Binshahna A. S.: On Fuzzy strongly semi continuity, and precontinuity; Fuzzy Sets and Systems, 14(1991) 303-308. - [4] Chang C. L.: Fuzzy Topological spaces; J. Math. Anal. Appl., 24 (182-90). - [5] Mashhour A. S., Ghamin M.H. and Fath Alla: On Fuzzy non continuous mapping; Bull. Calcutta. Math. Soc., 78(1986) 57-69. - [6] Mukherjee M. N. and Sinha S. P., irresolute and almost open function betbeen fuzzy Topological spaces; Fuzzy Sets and Systems, 29 (1989) 381-388. - [7] Mukhergee M. N. and Ghosh B., some stronger Forms of Fuzzy continuous mapping on Fuzzy topological spaces, Fuzzy Sets and Systems 36(1990) 375-387. # R. K. SARAF & R. K. POURANIK; ON STRONGLY $F_{S\beta}\text{-}IRRESOLUTE\ MAPPINGS}$ - [8] Prasad R. Thakur S. S. and Saraf R. K. : Fuzzy α irresolute mapping; J. Fuzzy Math. , 2(1994) 235-239. - [9] Pu. P.M and Liu. Y.M.: Fuzzy Topology I Neigh bourhood structure of fuzzy point and moor Smith convergence; J. Math. Anal App., 76(1989) 571-594. - [10] Roja E. and Balasubrumanian G: On fuzzy β T_½ spaces and its generalization, Bull. Calcutta Math. Soc., 94(2002)413-420. - [11] Saraf R. K., Navlgi G. and Caldas M.: On Fuzzy α Preirresolute mapping; Advances in Fuzzy Math. 3(2008)19-25. - [12] Singal M.K. and Prakash N: Fuzzy Preopen sets and fuzzy pre separation axioms; Fuzzy Sets and Systems 44(1991), 271-281. - [13] Thakur S. S. and Singh S.: On Fuzzy semi Preopen Sets and fuzzy semi pre Continity, Fuzzy Sets and Systems, (98)283-391. - [14] Yalvac T.H.: Fuzzy sets and function on Fuzzy spaces; J. Math. Anal. Appl., 126(1987) 409-423. - [15] Zadeh L.A.: Fuzzy sets; Inform and control, 8(1965) 338-353.