Pre - θ - perfect mappings and p - closed spaces

Abdulla Salem Bin Shanna

Department of Mathematics, University of Aden, Aden, Yemen

(Received: 29-12-2011)

Abstract. In this paper, we introduce Pre - θ - perfect mappings and investigate some of their characterizations and properties. Also we give a characterization of p - closed spaces.

Key words: Pre - θ - closed sets, filter base, p - closed spaces.

1. Introduction

A mapping $f: X \rightarrow Y$ is called perfect if f is closed and $f^{-1}(y)$ is compact, for each $y \in Y$. Whyburn [9] proved that a mapping $f: X \rightarrow Y$ is perfect if and only if for every filter base Φ on $f(X)$ converging to $y \in Y$, $f^{-1}(\Phi)$ is directed towards $f^{-1}(y)$. The purpose of the present paper is to introduce pre - θ - perfect mappings defined in a way similar to the above characterization of a perfect mapping and investigate some of their properties and characterizations. Also we give a characterization of p - closed spaces.

2. Preliminaries

Recall that a subset A of a space X is called preopen [4] if $A \subseteq \text{int} (\overline{A})$. The complement of a preopen set is called preclosed. The intersection of all preclosed sets containing A is called the preclosure of A and denoted by $\overline{\text{pc}}(A)$.

Definition 2.1[5]. Let A be a subset of a space X.

(i) A point $x \in X$ is called a pre - θ - cluster point of A if $\overline{\text{pc}}(V) \cap A \neq \emptyset$, for every preopen set V containing x.

(ii) The set of all pre - θ - cluster points of A is called the pre - θ - closure of A and is denoted by $\overline{\text{pc}}_\theta(A)$.

(iii) A subset A of a space X is called pre - θ - closed if $\overline{\text{pc}}_\theta(A) = A$.

(iv) The complement of a pre - θ - closed set is called pre - θ - open.

Remark 2.1. It is obvious that a pre - θ - open (resp. pre - θ - closed) set is preopen (resp. preclosed), but the converse need not be true as shown by Example 3.3 of [2].

Definition 2.2. Let X be a topological space.
(1) A point \(x \in X \) is called a pre-\(\theta \) - cluster point of a filter base \(\Phi \) in \(X \) if \(x \in \bigcap \{ \text{pol}_\theta(F) : F \in \Phi \} \).

(2) A filter base \(\Phi \) in \(X \) is \(p\theta \)-* convergent* [2] to a point \(x \in X \) if for each preopen set \(A \) containing \(x \), there exists an \(F \in \Phi \) such that \(F \subseteq \text{pol}(A) \).

(3) A filter base \(\Gamma \) is said to be subordinate [6] to a filter base \(\Phi \) if for each \(F \in \Phi \), there exists \(G \subseteq \Gamma \) such that \(G \subseteq F \).

(4) A filter base \(\Phi \) is said to be \(p\theta \) - directed towards \(A \subseteq X \) if every filter base subordinate to \(\Phi \) has a pre-\(\theta \) - cluster point in \(A \).

3. Pre-\(\theta \) - perfect mappings.

Definition 3.1. A mapping \(f : X \rightarrow Y \) is called pre-\(\theta \) - perfect \((p\theta \) - perfect in short) if for every filter base \(\Phi \) in \(f(X) \) \(p\theta \) - convergent to \(y \in Y \), \(f^{-1}(\Phi) \) is \(p\theta \) - directed towards \(f^{-1}(y) \).

Remark 3.1. Continuity is not assumed on \(p\theta \) - perfect mappings.

Definition 3.2. A mapping \(f : X \rightarrow Y \) is called pre-\(\theta \) - closed \((p\theta \) - closed in short) if \(\text{pol}_\theta(f(A)) \subseteq f(\text{pol}_\theta(A)) \), for every subset \(A \) of \(X \).

Theorem 3.1. Every \(p\theta \) - perfect mapping is \(p\theta \) - closed.

Proof. Suppose that \(f : X \rightarrow Y \) is \(p\theta \) - perfect mapping. Let \(A \) be any subset of \(X \) and \(y \in \text{pol}_\theta(f(A)) \). Then there exists a filter base \(\Phi \) on \(f(A) \), \(p\theta \) - converging to \(y \). Put \(\Gamma = f^{-1}(\Phi) \cap A : F \in \Phi \). Then \(\Gamma \) is a filter base in \(X \) and subordinate to the filter base \(f^{-1}(\Phi) \). Since \(f^{-1}(\Phi) \) is \(p\theta \) - directed towards \(f^{-1}(y) \), we have \(f^{-1}(y) \cap \{ \text{ad}_\theta(\Gamma) \} = \emptyset \). Therefore, we obtain \(y \in f(\text{pol}_\theta(A)) \). This implies that \(f \) is \(p\theta \) - closed.

Theorem 3.2. A mapping \(f : X \rightarrow Y \) is \(p\theta \) - closed if and only if the image \(f(A) \) of each pre-\(\theta \) - closed subset \(A \) of \(X \) is pre-\(\theta \) - closed subset of \(Y \).

Proof. Obvious.

Theorem 3.3. The composition \(g \circ f : X \rightarrow Z \) of \(p\theta \) - closed mappings \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) is \(p\theta \) - closed mapping.

Proof. Obvious.

Theorem 3.4. A mapping \(f : X \rightarrow Y \) is \(p\theta \) - perfect if and only if \([\text{ad}_\theta]_Y f(\Phi) \subseteq f(\text{ad}_\Phi) \), for every filter base \(\Phi \) in \(X \).
Proof. Suppose \(f : X \to Y \) is \(p_\theta \)-perfect mapping. Let \(\Phi \) be a filter base in \(X \) and \(y \in \{ \text{ad}_{y_\nu}(\Phi) \} \). Then there exists a filter base \(\Gamma \) in \(f(X) \) which is subordinate to \(f(\Phi) \) and \(p_\theta^* \) converges to \(y \). Put

\[
H = \{ f^{-1}(G) \cap F : G \in \Gamma, F \in \Phi \},
\]

then \(H \) is a filter base in \(X \) subordinate to \(f^{-1}(\Gamma) \). Since \(f \) is \(p_\theta \)-perfect, \(f^{-1}(\Gamma) \) is \(p_\theta^* \)-directed towards \(f^{-1}(y) \). Therefore, we have \(f^{-1}(y) \cap (\{ \text{ad}_{y_\nu}H \}) = \emptyset \) and hence \(y \in \{ \text{ad}_{y_\nu} \} \). Conversely suppose that the condition holds and \(f \) is not \(p_\theta \)-perfect. Then there exists a filter base \(\Phi \) in \(f(X) \) such that \(\Phi \) \(p_\theta^* \) converges to a point \(y \in Y \) and \(f^{-1}(\Phi) \) is not \(p_\theta \)-directed towards \(f^{-1}(y) \). Thus there exists a filter base \(\Gamma \) in \(X \) which is subordinate to \(f^{-1}(\Phi) \) and \(f^{-1}(y) \cap (\{ \text{ad}_{y_\nu} \} \Gamma) = \emptyset \). Therefore, we have \(y \in (\{ \text{ad}_{y_\nu} f(\Gamma) \}) \) and hence \(y \in \text{pcl}_y(\{ f(G) \}) \) for some \(G \in \Gamma \). Then there exists a preopen set \(V \) containing \(y \) such that \((\text{pdl}(V)) \cap f(\Gamma) = \emptyset \). Since \(\Phi \) \(p_\theta^* \) converges to \(y \) and \(\Gamma \) is subordinate to \(f^{-1}(\Phi) \), there exists \(G \in \Gamma \) such that \(f(G) \subset \text{pcl}(V) \). Consequently, we have \(G \cap G = \emptyset \). This contradicts that \(\Gamma \) is a filter base.

4. \(p \)-closed spaces

Definition 4.1. A space \(X \) is called \(p \)-closed [3] if every cover of \(X \) by preopen sets has a finite subcover whose preclosures cover \(X \).

Definition 4.2. A subset \(A \) of a space \(X \) is called \(p \)-closed relative to \(X \) if for every cover \(\{ V_\alpha : \alpha \in \Delta \} \) of \(A \) by preopen sets of \(X \), there exists a finite subfamily \(\Delta_0 \) of \(\Delta \) such that \(A \subset \bigcup \{ \text{pdl}(V_\alpha) : \alpha \in \Delta_0 \} \).

Theorem 4.1. A subset \(B \) of a space \(X \) is \(p \)-closed relative to \(X \) if and only if \(\emptyset \neq B \cap \bigcap (\{ \text{ad}_{v_\nu} \} \Phi) \neq \emptyset \) for every filter base \(\Phi \) in \(B \).

Proof. Suppose that \(B \) is \(p \)-closed relative to \(X \). Assume that there exists a filter base \(\Phi \) in \(B \) such that \(B \cap \{ \text{ad}_{v_\nu} \} \Phi = \emptyset \). Then for each \(x \in B \) there exists a preopen set \(V_x \) containing \(x \) and an \(F_x \in \Phi \) such that \(F_x \cap \text{pdl}_{v_x}(V_x) = \emptyset \). Since \(B \) is \(p \)-closed relative to \(X \), there exists a finite number of points \(x_1, x_2, \ldots, x_n \) in \(B \) such that

\[
B \subset \bigcup \{ \text{pdl}(V_{x_i}) : i = 1,2,\ldots, n \}.
\]

Put \(F = \{ F_{x_i} : i = 1,2,\ldots, n \} \), then we obtain \(F \cap B = \emptyset \). This contradicts that \(\Phi \) is a filter base.
Conversely suppose $B \cap (\cap_{\Phi} \, \Phi) \neq \emptyset$, for every filter base Φ in B. Assume that B is not p-closed relative to X. Then there exists a cover $\{ V_\alpha : \alpha \in \Delta \}$ of B by preopen sets of X such that:

$$B \subseteq \bigcup \{ \text{pol}(V_\alpha) : \alpha \in \Delta \},$$

for every $V \in \Gamma(\Delta)$.

where $\Gamma(\Delta)$ denotes the family of all finite subsets of Δ. Now put

$$F_V = \bigcap \{ B - \text{pol}(V_\alpha) : \alpha \in \Delta \},$$

for each $V \in \Gamma(\Delta)$.

Then $\Phi = \{ F_V : V \in \Gamma(\Delta) \}$ is a filter base in B and $B \cap (\cap_{\Phi} \, \Phi) = \emptyset$. This is a contradiction. Therefore B is p-closed relative to X.

Theorem 4.2. If a mapping $f : X \to Y$ is $p\theta$-perfect, then $f^{-1}(B)$ is p-closed relative to X, for every p-closed relative to Y set B of Y.

Proof. This follows from Theorem 3.4 and Theorem 4.1.

Theorem 4.3. A mapping $f : X \to Y$ is $p\theta$-perfect if and only if

(i) f is $p\theta$-closed, and

(ii) $f^{-1}(y)$ is p-closed relative to X, for each $y \in Y$.

Proof. Necessity. Follows from Theorem 3.1 and Theorem 4.2.

Sufficiency. This is proven in a similar manner as the proof of conversely of Theorem 3.4.

Theorem 4.4. The composition $gof : X \to Z$ of $p\theta$-perfect mappings $f : X \to Y$ and $g : Y \to Z$ is $p\theta$-perfect mapping.

Proof. For $p\theta$-closedness of (gof), this follows from Theorem 3.1 and Theorem 3.3 and

$$(gof)^{-1}(z) = f^{-1}(g^{-1}(z))$$

is p-closed follows from Theorem 4.3 and Theorem 4.2.

Theorem 4.5. Let S be a singleton with its unique topology. For a space X, the following statements are equivalent

(i) X is p-closed

(ii) The constant mapping $c : X \to S$ is $p\theta$-perfect.

Proof. The equivalence (i) \iff (ii) follows from Theorem 4.3.

Theorem 4.6. If $f : X \to Y$ is $p\theta$-perfect mapping and Y is p-closed, then X is p-closed.

Proof. We show that the constant mapping $k : X \to S$ is $p\theta$-perfect. Since Y is p-closed, therefore the mapping $c : Y \to S$ is $p\theta$-perfect. Now k is $p\theta$-perfect follows by noting that it is the composition $(c \circ f)$ of two $p\theta$-perfect mappings. Hence X is p-closed.
A. S Bin Shalha Pre-θ-perfect mappings and

References

الرّواسب قبل النّامة من النوع 0 وفرعّات p المغلّة

عبدالله سالم بن شحة
قسم الرياضيات - جامعة عدن - اليمن

في هذا البحث قدمنا مفهوم الرواسب قبل النّامة من النوع 0 وفرعّات p المغلّة بعض من خواصها وخصائصها، كما قمنا أيضاً في هذا البحث بتقديم بعض الخصائص لفرعّات p المغلّة.