

Copyright @ by Tanta University, Egypt

Delta J. Sci. 35 (2011) 20-24

MATHEMATICS

Regular preopen L-sets and extremally predisconnected spaces

Abdulla Salem Bin Shahna

Department of Mathematics, University of Aden, Aden, Yemen (Received: 29-12-2011)

ABSTRACT: In this paper , we introduce the notions of regular preopen L-sets and extremally predisconnectedness in L-topological space and investigate some of their properties and characterizations .

Key words: Preopen L-set, Regular preopen L-set, Extremally predisconnected space.

1. Introduction

In I-topological spaces, the notion of preopen I-sets were introduced and investigated by Bin Shahna [2]. Our primary goal is to introduce and investigate the notions of regular preopen L-sets and extremally predisconnectedness in L-topological spaces and give some of their properties and characterizations.

2. Preliminaries

The category **DMRG** [5] comprises all complete lattices having an order – reversing involution (') or De Morgan complementation , called complete De Morgan lattices (or algebras) , and morphisms preserving arbitrary joins and all involutes and hence arbitrary meets.

We know that the lattice L is in | **DMRG**| . Thus from now on , let $L \in |$ **DMRG**| and satisfies the first infinite distributive law . For every $A \subset L$, the De Morgan laws hold:

 $(\vee A)' = \wedge \{a' : a \in A\} \text{ and } (\wedge A)' = \vee \{a' : a \in A\}.$

The category **SET** comprises all sets and functions between sets . For $X \in |$ **SET** | , L^X denotes the set of all mappings from X to L . Then (L^X , \leq) is a complete lattice and has a quasi – complementation (') [4] . That is $L^X \in |$ **DMRG**| . Thus De Morgan laws are inherited by (L^X , ').

A member $\lambda \in L^X$ is called L –set in X . For λ , $\mu \in L^X$, $\lambda \leq \mu$ in L^X if and only if $\lambda(x) \leq \mu(x)$ in L, for each $x \in X[4]$.

In an obvious way L-topological spaces and L-continuous functions [4] form a topological category and denoted by L-TOP [5].

Definition 2.1 [1]. Let $X \in |L\text{-TOP}|$. Then $\lambda \in L^X$ is called

- (i) Regular open (resp. regular closed) if $\lambda = Int Cl \lambda$ (resp. $\lambda = Cl Int \lambda$);
- (ii) Semiopen (resp. semiclosed) if $\lambda \leq \mathit{Cl}\ \mathit{Int}\ \lambda$ (resp. $\mathit{Int}\ \mathit{Cl}\ \lambda \leq \lambda$) .

Definition 2.2 [2]. Let $X \in |L\text{-TOP}|$. Then $\mu \in L^X$ is called

(i) Preopen (resp. preclosed) if $\mu \leq Int Cl \mu$ (resp. $Cl Int \mu \leq \mu$);

A. S Bin Shahna.: Regular preopen L-sets and extremally

(ii) α - open (resp. α - closed) if $\mu \leq Int CI$ Int μ (resp. CI Int CI $\mu \leq \mu$).

Definition 2.3 [6]. Let $X \in |L\text{-TOP}|$ and let $\lambda \in L^X$. The L-sets plnt $\lambda = \vee \{ \mu \in L^X : \mu \le \lambda \text{ and } \mu \text{ is preopen } \}$

 $pCl\lambda = \bigwedge \{ \mu \in L^X : \lambda \leq \mu \text{ and } \mu \text{ is preclosed} \},$

are called the preinterior and the preclosure of λ respectively .

Obviously $pInt\ \lambda$ is the greatest preopen L-set contained in λ and $pCI\ \lambda$ is the smallest preclosed L-set containing λ . Also we have $Int\ \lambda \leq pInt\ \lambda \leq \lambda$ and $\lambda \leq pCI\ \lambda \leq CI\ \lambda$.

Lemma 2.1[6]. For $X \in |L-TOP|$ and let $\lambda \in L^X$, (i) $(plnt \ \lambda)' = pCl \ \lambda'$;

(ii) $(pCl \lambda)' = pInt \lambda'$.

Lemma 2.2. For $X \in |L\text{-TOP}|$ and $\mu \in L^X$,

(i) Int plnt μ = Int μ , Cl pCl μ = Cl μ :

(ii) plnt $\mu \leq Int Cl \mu$;

(iii)CI Int $\mu \leq pCI \mu$.

Proof. It follows from the fact that $pInt \mu$ (resp. $pCl \mu$) is a preopen (resp. preclosed) L-set in X.

3. Regular preopen L-sets.

Definition 3.1. Let $X \in [L\text{-TOP}]$. Then $\lambda \in L^X$ is called

- (i) Regular preopen if $\lambda = pInt pCI \lambda$:
- (ii) Regular preclosed if $\lambda = pCl pInt \lambda$.

It is clear that a regular preopen (resp. regular preclosed) L-set is a preopen (resp. preclosed) L-set .

Theorem 3.1. Let $X \in |L\text{-TOP}|$. Then $\lambda \in L^X$ is regular preopen if and only if λ' is regular preclosed.

Proof. It follows from Lemma 2.1.

Theorem 3.2. For $X \in |L-TOP|$,

- (i) The preclosure of a preopen L-set is a regular preclosed L-set;
- (ii) The preinterior of a preclosed L-set is a regular preopen L-set .

Proof. We prove only (i) . Let λ be a preopen L-set in X. Then $pInt\ pCl\ \lambda \leq pCl\ \lambda$ and $pCl\ pInt\ pCl\ \lambda \leq pCl\ \lambda$. Now λ is a preopen L-set implies that $\lambda \leq pInt\ pCl\ \lambda$ and hence $pCl\ \lambda \leq pCl\ pInt\ pCl\ \lambda$. Thus $pCl\ \lambda$ is a regular preclosed L-set.

Theorem 3.3. Let $X \in |L\text{-TOP}|$. If $\lambda \in L^X$ is preclopen, then λ is a regular preopen L-set in X.

Proof. If λ is preclopen L-set in X, then $\lambda = pInt \lambda$ and $\lambda = pCl \lambda$, therefore we have $\lambda = pInt (pCl \lambda)$. Hence λ is a regular preopen L-set in X.

Theorem 3.4. Let $X \in |L\text{-TOP}|$ and $\lambda \in L^X$ such that Cl λ (resp. pCl λ) is a preopen L-set in X. Then λ is a preopen L-set in X.

Proof. Suppose that $Cl(\lambda)$ is a preopen L-set in X. Then we have $\lambda \leq Cl(\lambda) \leq Int(Cl(\lambda)) = Int(Cl(\lambda))$. Hence λ is a preopen L-set in X.

Corollary 3.1. Let $X \in |L\text{-TOP}|$ and $\lambda \in L^X$ such that $Cl(\lambda)$ (resp. $pCl(\lambda)$) is a regular preopen L-set in X. Then λ is a preopen L-set in X.

Theorem 3.5. Let $X \in |L\text{-TOP}|$. Then $\lambda \in L^X$ is α -open and regular preopen L-set in X if and only if $\lambda = Int CI Int \lambda$.

Proof. Necessity . Let λ be an α -open and regular preopen L-set in X , then $\lambda \leq Int \ CI \ Int \ \lambda$ and $\lambda = pInt \ pCI \ \lambda$. Now

 $\lambda = pInt pCL \lambda \ge pInt(Cl Int \lambda) \ge Int Cl Int \lambda$.

Hence $\lambda = Int CI Int \lambda$.

Sufficiency . Let $\lambda = Int \ CI \ Int \ \lambda$, then obviously λ is an α -open . Now $\lambda = Int \ CI \ Int \ \lambda \leq Int \ pCI \ \lambda \leq pInt \ pCI \ \lambda$.

Also

$$pInt pCI \lambda \leq Int CI (pCI \lambda) = Int CI \lambda$$

$$= Int CI (Int CI Int \lambda)$$

$$\leq Int CI (CI Int \lambda)$$

$$= Int CI Int \lambda = \lambda.$$

Hence λ = plnt pCl λ i.e. λ is a regular preopen L-set .

Theorem 3.6. Let $X \in |L-TOP|$. Then $\lambda \in L^X$ is regular preopen and semiopen L-set in X if and only if λ is a regular open L-set in X.

Proof. Necessity. Suppose that λ is a regular preopen and semiopen L-set in X. Then λ = $pInt\ pCl\ \lambda$ and $\lambda \leq Cl\ Int\ \lambda$. So we have

 $\lambda = pInt \, pCl \, \lambda \leq Int \, Cl \, (pCl \, \lambda) = Int \, Cl \, \lambda$.

Also

$$\lambda = pInt \, pCl \, \lambda \ge pInt \, (Cl \, Int \, \lambda)$$
 $\ge Int \, (Cl \, Int \, \lambda)$
 $= Int \, Cl \, (Cl \, Int \, \lambda)$
 $\ge Int \, Cl \, \lambda$.

Thus $\lambda = Int Cl \lambda$ implies λ is a regular open L-set.

Sufficiency. Suppose λ is regular open , then λ = Int CI λ =Int CI Int λ and the result follows immediately from Theorem 3.5.

Corollary 3.1. Let $X \in |L\text{-TOP}|$. Then $\lambda \in L^X$ is regular preopen and semiclosed L-set in X if and only if λ is a regular closed L-set in X.

4. Extremally predisconnected spaces .

Definition 4.1. An $X \in |L\text{-TOP}|$ is said to be extremally predisconnected if for all preopen L-sets λ in X, $pCI(\lambda)$ is a preopen L-set in X.

Theorem 4.1. Let $X \in |L\text{-TOP}|$ be an extremally predisconnected. Then $\lambda \in L^X$ is preclopen if and only if λ is a regular preopen L-set in X.

Proof. Necessity. It follows from Thoerem 3.3.

Sufficiency. Since X is an extremally predisconnected and λ is a regular preopen L-set in X, then λ is preopen and so $pCl(\lambda)$ is a preopen L-set in X. Hence $\lambda = pInt(pCl(\lambda)) = pCl(\lambda)$ which implies that λ is a preclosed L-set in X.

Theorem 4.2. Let $X \in |L\text{-TOP}|$ be an extremally predisconnected . For $\lambda \in L^X$, the following statements are equivalent:

- (i) λ is a preclopen L-set in X;
- (ii) $\lambda = pCl(pInt \lambda)$;
- (iii) λ ' is a regular preopen L-set in X;
- (iv) λ is a regular preopen L-set in X.

Proof. (i) ⇒ (ii) is obvious .

- (ii) \Rightarrow (iii) . Let $\lambda = pCl$ ($pInt \lambda$) . Then $\lambda' = (pCl \ pInt \lambda)' = pInt (<math>pInt \lambda$)' = $pInt \ pCl \lambda'$. Hence λ' is a regular preopen L-set in X.
- (iii) \Rightarrow (iv) . From Theorem 4.1, λ ' is a preopen and preclosed L-set in X . Hence λ is a preopen and preclosed L-set in X . Therefore λ = pInt pCl λ and hence λ is a regular preopen L-set in X .
 - (iv) ⇒ (i) . It follows from Theorem 4.1.

Theorem 4.3. Let $X \in |L\text{-TOP}|$ be an extremally predisconnected. Then for $\lambda \in L^X$; Cl λ (resp. PCl λ) is a regular preopen L-set in X if and only if λ is a preopen L-set in X. **Proof. Necessity.** It follows from Theorem 3.4.

Sufficiency. Let λ be a preopen L-set in X. Then CI λ is a preopen L-set in X and hence preclopen . Thus CI λ is a regular preopen L-set in X.

Corollary 4.1. Let $X \in |L\text{-TOP}|$ be an extremally predisconnected. Then for $\lambda \in L^X$, the L-sets CI (Int λ), CI (pInt λ), pCI (Int λ) and pCI (pInt λ) are regular preopen L-sets in X.

Theorem 4.4. Let $X \in |L\text{-TOP}|$ be an extremally predisconnected. If $\lambda \in L^X$ is either a regular open or a regular closed L-set, then λ is a regular preopen L-set in X.

Proof. If λ is regular open, then $\lambda = Int Cl \lambda$. Now

$$\lambda = Int Cl \lambda = Int Cl (pCl \lambda) \ge pInt pCl \lambda$$
.

Also

pInt pCl
$$\lambda \ge pInt(Cl Int \lambda) \ge Int Cl(Int \lambda)$$

= Int Cl $\lambda = \lambda$.

Thus $\lambda = pInt \, pCl \, \lambda$ implies λ is a regular preopen L-set.

Similarly if λ is regular closed , then λ = CI Int λ , and we have λ = CI Int λ = pCI (CI Int λ) \geq pInt pCI (CI Int λ)

= pInt pCI λ .

Also

$$pInt pCI \lambda = pInt pCI (CI Int \lambda) \ge pInt pCI (Int \lambda)$$
$$= pCI (Int \lambda) \ge CI Int (Int \lambda)$$

= CI Int $\lambda = \lambda$.

Hence $\lambda = pInt \, pCl \, \lambda$ and λ is a regular preopen L-set in X.

References

[1] K.K.Azad , On fuzzy semicontinuity , fuzzy almost continuity and fuzzy weakly continuity , J.Math. Anal. Appl. 82 (1981) , 714-732.

[2] A.S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), 303-308.

[3] C.L. Chang , Fuzzy topological spaces , J. Math. Anal. Appl. 24 (1968) , 182-190 .

[4] T. Kubiak , Separation axioms : extention of mappings and embedding of spaces , in : U. Höhle , S.E. Rodabaugh (Eds.) , Mathematics of Fuzzy Sets : Logic , Topology and Measure Theory , The Handbooks of Fuzzy Set Series , Vol. 3 , Kluwer Academic Publishers , Dordrecht , 1999, pp. 433-479 .

[5] S.E. Rodabough, Categorical foundations of variable- basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Set Series, Vol. 3, Kluwer Academic Publishers, Dordrecht, 1999, pp. 273-388.
[6] M. K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems 44 (1991), 273-281.

المجموعات المنتظمة قبل المفتوحة -L والفراغات غير المترابطة القبلية المتطرفة

عبدالله سالم بن شحنة قسم الرياضيات- جامعه عدن- اليمن

في هذا البحث قمنا بتقديم مفهوم المجموعات قبل المفتوحة المنتظمة الفازية -L ومفهوم غير الترابط القبلي المتطرف في الفضاءات الفازية -L كما قمنا بدراسة بعض خواص هذين المفهومين وبعض خصائصهما .