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0.1 Abstract In this paper, we first recall the definition of a family of Koenig’s root-
finding algorithms known as Koenig’s algorithms (𝐾 , ) for polynomials. In the whole 
paper p has degree 𝑑 ≥ 2  with real coefficients and real (and simple) zeros   𝑥  , 1 ≤
𝑘 ≤ 𝑑 .  
Now we want to discuss Koenig’s algorithms in details where  
  𝑛 = 4, (𝐾 , (𝑧)). 
Keywords: Koenig’s function,derivative of  Koenig, immediate basins of  Koenig. 
Definition 0.1.1. 
 Let 

𝑝(𝑧) = 𝑎 + 𝑎 𝑧 + 𝑎 𝑧 + ⋯ + 𝑎 𝑧
+ 𝑎 𝑧  

be a polynomial with real coefficients and real 
(and simple) zeros 𝑥   ,   1 ≤ 𝑘 ≤ 𝑑, and 𝑛 ≥ 2 is 
an integer. Koenig’s method of p of order n is 
defined by the formula 

                           𝐾 , (𝑧) = 𝑧 + (𝑛 − 1)
( )[ ]

( )[ ]
 ,                   

(0.1.1) 

where  ( )[ ]  is the nth derivative of    . 

For n = 2 the map  𝐾 ,  is Newton’s method of p, 
for n = 3 the map 
 𝐾 ,  is Halley’s method of  p, and 
Householder’s method 

h (𝑧) = 𝐾 , (𝑧) −
𝑝

2𝑝′
𝐾′ ,  

which we have discussed all of them in the 
previous papers 
0.2 Koenig’s root-finding algorithms of order 
four 

Let p be a polynomial with real coefficients and 
real (and simple) zeros    𝑥   ,   1 ≤ 𝑘 ≤ 𝑑,  then 

𝐾 , = 𝑧 − 3    ;                     

(0.2.1) 
defined as Koenig’s function of order four 
associated with  p. The fixed points of  𝐾 ,  are 

given by the zeros of  𝑝 𝑝 − 2𝑝𝑝  . Since we 
have known  𝑝𝑝 − 2𝑝 < 0  on  R, the fixed 
points of 𝐾 ,  are the zeros of  p  together with ∞, 
and from proposition (0.5.1) the rational map 
𝐾 ,  has degree 3𝑑 − 2. 
Proposition 0.2.1. Let 𝑝: 𝐶 → 𝐶   be a 
polynomial of degree d, then Koenig’s method 
𝐾 ,   is a rational map, it has a repelling fixed 
point at ∞  with multiplier (𝑑 + 2) (𝑑 − 1)⁄ . 
Proof. When |𝑧| tends to ∞, we have 

𝑝(𝑧)~  𝜆𝑧    , 
we know 

𝐾 , = 𝑧 + 3
( )

( )
  , 

where  
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( )  ~ 
( )

 
   , 

and  

( )  ~ 
( )( )

 
   , 

 
Then 
𝐾 ,  ~ 𝑧 − 3    ,   

 

𝐾 ,  (𝑧)  ~ 1 −  ~ 
  
  , 

 
as we know that the multiplier 𝜆 ¸ at ∞ is equal to 

lim
→

1

𝐾 , (𝑧)
=

𝑑 + 2

𝑑 − 1
   . 

 
0.3  Derivative of Koenig’s method of order 
four 
The derivative of Koenig’s method 𝐾 ,  is 
𝐾 , =

( ( ) ( ))

( )
  ,          

(0.3.1) 
from (0.3.1), we can see that the roots of  p(z) are 
superattracting fixed points of  𝐾 , , but of one 
degree higher order than for Halley’s method. 
There are three critical points at each fixed point 
of  𝐾 , . The rational map 𝐾 ,  has 2(3𝑑 − 2) −

2 = 6𝑑 − 6 critical points, and  3𝑑 − 6 of them 
are free critical points. Also from proposition 
(0.5.1), the local degree of  𝐾 ,  at the roots of p 
is exactly equal to four. 
Remark 0.3.1. Let x be a simple zero of p, then 
𝐾 ,  (x) = x and from (0.5.1) 𝐾 , (𝑥) =

𝐾 , (𝑥) = 𝐾 , (𝑥) = 0 , while 𝐾 ,
( )

≠ 0 . Thus 
𝐾 ,  is of order four for simple roots. 
Since p(x) = 0, it follows that  𝑁 (𝑥) = 𝐻 (𝑥) =

𝐾 , (𝑥) = 𝑥,  and this fixed point is 
superattracting fixed point for the three methods 
because 𝑁′ (𝑥) = 𝐻′ (𝑥) = 𝐾′ , (𝑥) = 0 . And 
since the third derivative of 𝐾 ,  vanishes, 
whereas the third derivative of 𝐻  does not, the 
graph of 𝐾 ,  is flatter than that of 𝐻   near the 
fixed point. Thus 𝐾 ,  
is faster convergence to the fixed point than 𝐻 . 
From figures (1,2), Koenig’s function ( 𝐾 , ) 
looks like Newton’s function but (𝐾 , ), where 
𝑝(𝑧) = 𝑧 − 𝑧 , has non-real critical points 
wherea Newton’s function does not. 
 
 
 
 

 
 
 
                  
 
 
 
 
  Figure 1: Koenig’s function for the 
polynomial 𝑝(𝑥) = 𝑥 − 𝑥. 
Proposition 0.3.1. Let 𝑝: 𝐶 → 𝐶   be a 
polynomial of degree d with real coefficients 
and real (and simple) zeros. Then the rational 
map𝐾 ,   has 2𝑑 − 2   repelling fixed points in C 
and their multipliers are all equal to four. 
And 𝑝𝑝 − 2𝑝′ < 0 on R, it follows that, if p > 
0 in (𝑐 , 𝑥 ), then p' < 0 and p''' < 0, 
and if p < 0 in(𝑐 , 𝑥 )  , then p' > 0 and p''' > 0. 
Thus 

𝑝(𝑝𝑝 − 2𝑝′ )

6𝑝 𝑝𝑝 − 𝑝 − 𝑝 𝑝′′′
  < 0     𝑖𝑛       (𝑐 , 𝑥 ),   

it follows that 𝐾 , (𝑥) > 𝑥 in  (𝑐 , 𝑥 ), thus 
lim
→

𝐾 , (𝑥) = +∞ .             

Similarly, we have 
𝑝(𝑝𝑝 − 2𝑝′ )

6𝑝 𝑝𝑝 − 𝑝 − 𝑝 𝑝′′′
  > 0     𝑖𝑛       (𝑥 , 𝑐 ),   

So 𝐾 , (𝑥) < 𝑥       𝑖𝑛     (𝑥 , 𝑐 ), thus 
min

→
𝐾 , (𝑥) = −∞. 

 
and at the repelling fixed points of  𝐾 , , 𝑔 = 0. 
Thus 𝐾′ , = 4 at each repelling fixed point. 
Definition 0.3.1. If 𝑐 < 𝑐  are consecutive real 
poles of 𝐾 , , then the interval  (𝑐 , 𝑐 ) is called a 
band for 𝐾 ,  . 
Proposition 0.3.2. If  (𝑐 , 𝑐 ) is a band for 𝐾′ ,   
that contains a root of  p(x), then 

lim
→

𝐾 , (𝑥) = +∞,            min
→

𝐾 , (𝑥)

= −∞ 
 
Proof. From 

𝐾 , = 𝑧 − 3
𝑝(𝑝𝑝 − 2𝑝′ )

6𝑝 𝑝𝑝 − 𝑝 − 𝑝 𝑝′′′
     , 
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Figure 2: Iteration of Koenig’s function for the 
polynomial 𝑝(𝑧) = 𝑧 − 𝑧. 
 
Proof. Let 

𝐾 , (𝑧) = 𝑧 + 3
𝑔(𝑧)

𝑔 (𝑧)
  , 

Where 

𝑔 =
1

𝑝
=

2𝑝 − 𝑝𝑝

𝑝
    , 

a rational map ℛ: ℂ → ℂ . Assume that A is not 
simply connected. Then there exist in ℂ two 
disjoint domains 𝑈  and 𝑈  intersecting A, such 
that 𝑉 = ℛ(𝑈 ) = ℛ(𝑈 ) ⊃ 𝑈 ⋃𝑈 , ℛ(𝜕𝑈 ) =

𝜕𝑉 ⊂ 𝐴 𝑓𝑜𝑟 𝑖 = 0,1, 𝑉⋃𝐴 = ℂ    and V is 
homeomorphic to a disc. 
 

𝑔′ =
1

𝑝
=

6𝑝𝑝 𝑝 − 6𝑝′ − 𝑝 𝑝

𝑝
   . 

Let 𝑥   ,   1 ≤ 𝑥 ≤ 𝑑,  be the zeros of p which 
are real and simple. The fixed points  of  𝐾 , (𝑧)  
are  ∞ , the points  𝑥    and the zeros of the 

rational map 𝑔 = . 

 From (0.3.2), we can see that g has 3d poles. 
When 𝑧 → ∞, then 𝑝(𝑧)~𝜆𝑧  and it follows that 
g has a zero of order 𝑑 + 2  at ∞ . Since the 
number of zeros for any rational map is equal to 
the number of poles, then  has 3𝑑 − (𝑑 + 2) =
2𝑑 finite zeros. Since 
we have proved that 2𝑝′ − 𝑝𝑝′′ > 0 on R, 2𝑑 −
2 zeros of 𝑔  are non-real repelling fixed 
points of 𝐾 , . Now we have 

𝐾 , = 4 −
3𝑔𝑔′′

𝑔′
 

 
 
 
 
 
 
 
 
Figure 3: Koenig’s function for the polynomial 
𝑝(𝑥) = (𝑥 − 1)(𝑥 − 1 5⁄ ). 

 
0.4 Immediate basins of Koenig’s method of 
order four 
In this section, we want to prove that each 
component of Fatou set of Koenig’s method 𝐾 ,  
is simple connected. 
Lemma 0.4.1. ( [6]) Let A be the immediate 
basin of attraction to a fixed point for 
 
Theorem 0.4.2. The immediate basins of 
attraction to the roots of any polynomial with 
real coefficients and only real (and simply) zeros 
𝑥 , 1 ≤ 𝑘 ≤ 𝑑  for Halley’s method, are simply 
connected. 
Proof. In [6] Feliks Przytycki has proved that the 
immediate basins of attraction for  𝑁   is simply 
connected. We can apply the same proof, so we 
can assume that A is a multiply connected 
immediate basin of attraction for ℛ = 𝐻   to a 
root 𝑥 ∈ ℝ of a polynomial p. Choose  𝑧 ∈ 𝑉 ∩
𝐴, 𝑉   given by Lemma (0:4:1), and branches 
ℛ , 

 
 
 
 

 
 
 
 
Figure 4: Iteration of Koenig’s function for the 
polynomial 𝑝(𝑧) = (𝑧 − 1)(𝑧 − 1 5⁄ ) . 
so that 𝑤 = 𝑅 (𝑧) ∈ 𝑈 ∩ 𝐴. Join 𝑧 with 𝑤  by 
a curve 
 𝛾 ⊂ 𝑉 ∩ 𝐴. Take care additionally to have 𝛾 ∩

𝑐𝑙 ∪ 𝑅 (𝑐𝑟𝑖𝑡𝑅) = ∅ . Define by induction 
𝛾 = 𝑅 (𝛾 ), where 𝑅  is the extension of 

the preliminary branch along the curve ⋃ 𝛾   . 
Define 𝛾 = ⋃ 𝛾  . The curve 𝛾  converges to 
a fixed point  𝜁 ∈ 𝑈   of R. The reason is that 
𝑅 ∘ … ∘ 𝑅  , n times, 𝑛 = 0,1, …, is a normal 
family of functions on a neighborhood of 𝛾  with 
the set of limit functions on boundary of  𝐴 
which is nowhere dense. So 
all limit functions are constant, hence  
lim

→
𝑑𝑖𝑎𝑚(𝛾 ) = 0. Therefore all limit points of 

the sequence of curves 𝛾  are fixed points for R. 
On the other hand they must be isolated from 
each other. So we actually have only one limit 
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point. The conclusion is that the boundary of  A 
contains two different fixed points 𝜁 , 𝜁  
belonging to two 
different components of the boundary of  A. But 
the only fixed points for 𝐻   are the roots of p 
(real), the roots of p'  (real), and ∞. Since we 
have proved that 𝐻  is continuous on ℝ . Thus 
𝐴⋂ℝ is an interval. We arrived at a contradiction. 
Theorem 0.4.3. Immediate basins of attraction 
of Koenig’ function 𝐾 ,  are simply connected, 
whenever p is a complex polynomial with real 
coefficients and only real and simple zeros 
𝑥 , 1 ≤ 𝑘 ≤ 𝑑 . 
Proof. We follow the same steps of proof of 
theorem (0.4.2) with some changes. In this case 
we work on the interval (𝑎 , 𝑎 ) , where 𝑎 , 𝑎   
are two consecutive poles of 𝐾 ,  instead of the 
interval (𝑟 , 𝑟 ) , where 𝑟 , 𝑟  are two repelling 
fixed points of 𝐻 . 
Assume that A is a non simply connected 
immediate basin of attraction for 𝐾 ,  to a root 
𝑥 ∈ ℝ of a polynomial p. We follow the same 
proof of theorem (0.4.2) until we arrive to the 
conclusion that boundary A contains two 
different fixed points belonging to two different 
components of  boundary of  A. But the only 
fixed points for 𝐾 ,   are the roots of p and ∞ . 
We arrived at a contradiction. 
Since 𝐾 , , (where for simplicity 𝑝(𝑧) = 𝑧 − 𝑧), 
has non real free critical points, then we are in 
the same situation of Halley’s method. 
0.5 General form of Koenig’s method 
The following rational map 

𝐾 , (𝑧) = 𝑧 + (𝑛 − 1)
(
1
𝑝

)[ ]

(
1
𝑝

)[ ]
 , 

is the general form of K¨oing’s function. We end 
this chapter with some general remarks describe, 
without proof, the dynamics of the general form 
of Koenig’s function 𝐾 , . We will consider p be 
a special polynomial of degree 𝑑 > 2 which is a 
complex polynomial with real coefficients and 
real (and simple) zeros 𝑥 , 1 ≤ 𝑘 ≤ 𝑑 , and 
𝑝 (𝑥 ) = 𝑝 (𝑥 ) = 0. 
Proposition 0.5.1. Let 𝑝: ℂ → ℂ be a polynomial 
of degree 𝑑 ≥ 2. Then for any 𝑛 ≥ 2, 
(a) The rational map 𝐾 ,   has degree (𝑛 −

1)(𝑑 − 1) + 1. 
(b) If p has d distinct roots, then 𝐾 ,  has 
(𝑛 − 2)(𝑑 − 1) repelling fixed points in ℂ. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) The local degree of 𝐾 ,  at the roots of p is 
exactly n. 
 (d) Koenig’s method 𝐾 ,  is a rational map, it 
has a repelling fixed point at ∞  with multiplier 

1 + . 

Proof. For details proof  see [9]. 
In general case of the map 𝐾 , , 𝑛 ≥ 2and p is 
special polynomial of degree 𝑑 ≥ 2 with real  
coefficients and real (and simple) zeros, we have 
two cases. 
Case (1) If n is even, then the map 𝐾 ,  has 𝑛𝑑 −

2 real critical points, and (𝑛 − 2)(𝑑 − 2)  non-
real critical points which are distributed as 
follows; each basind of 𝑥 , 2 ≤ 𝑘 ≤ 𝑑 − 1 , 
contains n real critical points and 𝑛 − 2 non-real 
critical points, symmetric to the real line; the two 
basins of 𝑥  , 𝑥  each contains (𝑛 − 1) 
real critical points. And there are (𝑑 − 1)  real 
poles of 𝐾 ,  . 
Case (2) If n is odd then the map 𝐾 ,  has 
(𝑛 − 1)𝑑  real critical points and (𝑛 − 1)(𝑑 − 2) 
non-real critical points, where each basin 𝑥 , 1 ≤
𝑘 ≤ 𝑑, contains (𝑛 − 1) real critical points and 
each basin  𝑥 , 2 ≤ 𝑘 ≤ 𝑑 − 1, contains (𝑛 − 1) 
non-real critical points. And there are no real 
poles. 
The following figures show how the critical 
points (c.p) distributed around the fixed points of 
the map 𝐾 , , where p is special polynomial. 
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 الملخص

 في هذه الورقه العلمية  نعرف طريقة كونج لإيجاد الجذور لكثيرة الحدود   
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𝑥 1حيث   ≤ 𝑘 ≤ 𝑑 ونعتبر درجة      𝑝(𝑧) في هذه الورقه     𝑑 ≥ 2 وسيتم مناقشة طريقة    
𝑛كونج بالتفصيل عندما  = 4 رجه  وكذلك ايجاد تفاضل دالة كونج للتعرف على حركة النقاط الح   

في النهايه تحت تكرار الداله وتم اثبات ان الاحواض الفورية للجذور تكون مرتبطه ارتباط بسيط و
 تعرضنا للصوره العامه لدالة كونج . 
 

 

 
 
  
 
 
 
 
 
 
 
 


