

Associated graphs and chain maps
 E.EL-Kholy and N. El-Sharkawey
 Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Abstract

: In this paper, we defined the associated graph constructed to a cellular folding defined on regular CW-complexes. These graphs declare the effect of a cellular folding on the complex. Besides we studied the properties of this graph and we proved that it is connected and vertex transitive if the cellular folding is neat. Finally, by using chain maps and homology groups we obtained the necessary and sufficient conditions for a cellular map to be cellular folding and neat cellular folding respectively.

Key words:

Cellular folding, chain map, regular CW-complexes, vertex transitive, neat folding. and E.El-Kholy [2]. The notion of cellular foldings is invented by E.El-Kholy and H.A.AL-Khurassani [1]. Different types of foldings are introduced by E.ELKholy and others [3, 4, 2].
(a) A cell decomposition of a topological space X is a

1-Introduction:

The study of foldings of a manifold into anther manifold began with S.A. Robertson's work on isometric folding of Riemannian manifolds [10]. After several attempts of generalizing the notion of isometric foldings, regular foldings were first studies by S.A. Robertson, H.R. Forran
is closed in X for each $e \in \zeta$, [8].

A CW-complex is said to be regular if all its attaching
maps are homemorphisms. If each closed n-cell is
homeomorphic to a closed Euclidean n-cell [8]. A topological
space that admits the structure of a regular CWcomplex is
termed a regular CWspace.
(b) Let K and L be cellular complexes and $f:|K| \rightarrow|L| \mathrm{a}$
continuous map. Then $f: K \rightarrow L$ is a cellular map if
(i) for each cell $\sigma \in K, f(\sigma)$ is a cell in L,
(ii) $\operatorname{dim}(f(\sigma)) \leq \operatorname{dim}(\sigma)$, [7].
(c) Let K and L be regular CW-complexes of the same
dimension and K be equipped with finite cellular subdivision
such that each closed n cell is homeomorphic to a closed

Euclidean n-cell. A
cellular map $f: K \rightarrow L$ is a cellular folding
decomposition of X into disjoint open cells such that for
each cell e of the decomposition, the boundary $\partial e=\bar{e}-e$ is
a union of lower dimensional cells of the decomposition. The set of cells of a cell decomposition of a topological space is called cell complex, [9].
A pair (X, ζ) consisting of a Hausdorff space X and a cell-
decomposition ζ of X is called a CW-complex if the
following three axioms are satisfied:

1- (Characteristic Maps): For each n-cell $e \in \zeta$ there is a
continuous map $\Phi_{e}: D_{n} \rightarrow X$ restricting to a homeomorphism
$\Phi_{e \mid \operatorname{lin}\left(D_{n}\right)}: \operatorname{int}\left(D_{n}\right) \rightarrow e$ and taking S^{n-1} into X^{n-1}. 2-(Closure Finiteness): For any cell $e \in \zeta$ the closure \bar{e} intersects only a finite number of other cells in ζ. 3-(Weak Topology): A subset $A \subseteq X$ is closed iff $A \cap \bar{e}$

This set associates a cell decomposition C_{f} of M. If M is a
surface, then the edges and vertices of C_{f} form a graph Γ_{f}
embedded in M, [6].
(e) Let $f:|K| \rightarrow|L|$ be a continuous function. If, for each
k-chain C in $K, f(\mathrm{C})$ is a k-chain in L and if the diagram

commutes, then
$f: K \rightarrow L$ is a chain function from K to L, [7].
(f) The set S_{n} of all permutations on n objects forms a group of order $n!$, called the symmetric group of degree n, the law of
composition being that for maps of the objects onto themselves. A group of permutations is said to be transitive
if, given any pair of letters a, b (which need not be distinct),
iff : (i) for each i-cell
$\sigma^{i} \in K, f\left(\sigma^{i}\right)$ is an i-cell in L, i.e., f
maps i-cells to i cells,
(ii) if $\bar{\sigma}$ contains n vertices, then $\overline{f(\sigma)}$ must contains n
distinct vertices.
In the case of directed complexes it is also required that f
maps directed i-cells of K to i-cells of L but of the same
dírection, [5].
A cellular folding
$f: K \rightarrow L$ is neat if $L^{n}-L^{n-1}$ consists of a single n-cell, interior L.
The set of all cellular foldings of K into L is denoted by $C(K$, L) and the set of all neat foldings
of K into L by $N(K, L)$.
(d) If $f \in C(K, L)$, then $x \in K$ is said to be a singularity of
f iff f is not a local homeomorphism at x. The set of all singularities of f corresponds to the "folds" of the map.
can join v to v^{\prime} by an $\operatorname{arc} e$ in R^{3} that runs from v through σ and σ^{\prime} to v^{\prime} crossing E transversely at a single point. The correspondence $\sigma \leftrightarrow v, E \leftrightarrow e$ is trivially a graph isomorphism from G_{f} to \widetilde{G}_{f}. It should be noted that the graph G_{f} has no multiple edges, no loops and generally disconnected.
In this paper by a a complex we mean a regular CWcomplex.

Examples(2-1):

(a) Let K be a complex with the cellular subdivisions given in

Fig.(1-a). Let $f: K \rightarrow K$ be a cellular folding defined by f (v_{2},
$\left.v_{5}, v_{8}, v_{11}\right)=\left(v_{4}, v_{7}, v_{10}\right.$, $\left.v_{13}\right), f\left(\mathrm{e}_{1}, \mathrm{e}_{4}, \mathrm{e}_{6}, \mathrm{e}_{9}, \mathrm{e}_{11}, \mathrm{e}_{14}\right.$, $\mathrm{e}_{16}, \mathrm{e}_{19}$,
$\left.\mathrm{e}_{21}\right)=\left(\mathrm{e}_{3}, \mathrm{e}_{5}, \mathrm{e}_{8}, \mathrm{e}_{10}, \mathrm{e}_{13}\right.$, $\left.\mathrm{e}_{15}, \mathrm{e}_{18}, \mathrm{e}_{20}, \mathrm{e}_{23}\right)$ and $f\left(\sigma_{i}\right)=\sigma_{i+1}$, $i=1$,
$3,5,7,9$, where the omitted $0,1,2$-cells through this paper
will be mapped to themselves. The graph G_{f} in this case has
ten vertices and five edges as shown in Fig.(1-b).
there exists at least one permutation in the group which
transforms a into b, [11]. Otherwise the group is called in
transitive. And is said to be 1-transitive if for any pair of
letters a, b, there exists a unique element x of the group such that $a * x=b$.

2-The associated graph:

Let $f: K \rightarrow L$ be a cellular folding. By using the cell subdivision C_{f} of K we can define the associated graph G_{f} constructed from the n-cells of K and the cellular folding f as follows:

The vertices of G_{f} are just the n-cells of K and if σ and σ^{\prime} are distinct n-cells of K such that $f(\sigma)=f\left(\sigma^{\prime}\right)$, then there exists an edge E with end points σ and σ^{\prime}. We then say that E is an edge in G_{f} with end points σ, σ^{\prime}.

The graph G_{f} can be realized as a graph \widetilde{G}_{f} embedded in R^{3} as follows. For each n-cells σ, σ^{\prime} choose any points $v \in \sigma$, $v^{\prime} \in \sigma^{\prime}$. If σ and σ^{\prime} are end points of an edge E, then we
a cellular subdivision

(b)

Fig.(1)
b) Consider the complex K (shown in Fig.(2), which consists of one 2-cell, seven 1 -cells and seven 0 -
$f: K \rightarrow K$ be a cellular folding defined as follow: f

$$
\begin{aligned}
& \left(v_{5}, v_{6}, v_{7}\right) \\
& \quad=\left(v_{2}, v_{3}, v_{2}\right), f\left(e_{i}\right)=e_{2} \\
& i=5,6,7 \text { and } f(\sigma)=\sigma
\end{aligned}
$$

G_{f} in this case consists of a vertex only with no edges.

consists of eight 0 -cells, sixteen 1-cells
and eight 2-cells, see Fig.(3). Let $f: K \rightarrow K$ be a cellular
folding defined by: $f\left(v_{5}\right.$, $\left.v_{6}, v_{7}, v_{8}\right)=\left(v_{1}, v_{3}, v_{3}, v_{3}\right)$,
$\left., e_{5}, e_{6}, e_{8}, e_{11}, e_{12}, e_{13}, e_{14}\right)=\left(e_{9}, e_{9}, e_{9}, e_{9}, \quad f(K)=L\right.$
 cells. Let

The graph

The graph G_{f} in this case has eight vertices and twelve edges see Fig.(3-b).
$\left.e_{15}, e_{7}, e_{9}, e_{10}, e_{16}, e_{15}, e_{16}\right)$ and
$f\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{8}\right)=\left(\sigma_{6}, \sigma_{6}, \sigma_{7}, \sigma_{7}, \sigma_{6}, \sigma_{7}\right)$.
This can be done by the composition of the following two
cellular foldings: $f_{1}\left(v_{5}, v_{8}\right)$
$=\left(v_{1}, v_{3}\right)$, $f_{1}\left(e_{1}, e_{2}, e_{6}, e_{8}, e_{11}, e_{13}, e_{14}\right)=$ $\left(e_{3}, e_{4}, e_{7}, e_{9}, e_{10}, e_{15}, e_{16}\right)$ and
$f_{1}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)=\left(\sigma_{5}, \sigma_{6}, \sigma_{7}, \sigma_{8}\right)$.
$f_{2}\left(v_{6}, v_{7}\right)=\left(v_{3}, v_{3}\right)$,
$f_{2}\left(e_{3}, e_{4}, e_{5}, e_{12}\right)=\left(e_{9}, e_{9}, e_{15}, e_{16}\right)$ and

$$
f_{2}\left(\sigma_{5}, \sigma_{8}\right)=\left(\sigma_{6}, \sigma_{7}\right)
$$

Fig.(2)
(c) Let K be a complex such that $|K|$ is a cylindrical surface with
$f\left(e_{3}, \mathrm{e}_{4}\right)=\left(e_{2}, \mathrm{e}_{1}\right)$ and $f($ $\left.\sigma_{2}, \sigma_{4}\right)=\left(\sigma_{1}, \sigma_{3}\right)$. The graph G_{f}
in this case has four vertices and two edges, see Fig.(4-b).

Fig.(4)

3-Properties of the

associated graph:

Some of the properties of the associated graph can be characterized by the following theorems:
Theorem (3-1):
Let K and L be complexes of the same dimension n, $f \in C(K, L)$. The associated graph G_{f} is disconnected unless f is a neat cellular folding.

Proof:

Let σ_{1} and σ_{2} be distinct
n-cells of $K^{(n)}$, and let $\sigma_{1} \sim$
σ_{2} means $f\left(\sigma_{1}\right)=f\left(\sigma_{2}\right)$. It is clear that the relation \sim is an equivalence relation.
Hence the quotient set $K^{(m)} / \sim$
$=\left\{[\sigma], \sigma \in K^{(n)}\right\}$ is a partition on $K^{(n)}$, where [σ] is the equivalence class of any n-cell σ. It follows that G_{f} has more than one

Fig.(3)

(d) Consider a complex K such that $|K|$ is a tours with four 0cells, eight 1-cells and four 2-cells, see Fig.(4-a). Let $f: K \rightarrow K$
be a cellular folding given by: $f\left(v_{\mathrm{i}}\right)=v_{\mathrm{i}}, i=1,2,3,4$,
vertices in the component, then any permutation of the set $V\left(G_{f}^{i}\right)$ is an
automorphism of G_{f}^{i}. Thus the set of all permutations (automorphisms) form a group which is the symmetric group S_{r} acting on the set $V\left(G_{f}^{i}\right)$. The orbit of any $\sigma \in V\left(G_{f}^{i}\right)$ under S_{r} is the whole set $V\left(G_{f}^{i}\right)$, i.e., $V\left(G_{f}^{i}\right)$ has a single orbit and hence the automorphism group S_{r} is transitive on $V\left(G_{f}^{i}\right)$.

Results(3-3):

Let $f: K \rightarrow L$ be a neat cellular folding:

1) The symmetric group S_{r}, $r=\left|K^{(n)}\right|$ acts 1-transitively on the
graph G_{f}.
2) G_{f} is vertex transitive.
3) From the above results we conclude that the graph G_{f} of a
neat cellular folding is a complete graph.
Example (3-4):
Consider the complex K shown in Fig.(5-a), which consists of four 2-cells, eight 1 -cells and five 0 -cells. Let $f: K \rightarrow K$ be a cellular folding defined as follows: f
component otherwise all the n-cells of K will be mapped to the same n-cell of L which in fact is the case of cellular neat folding. In the last case there will be a unique equivalence class $[\sigma]$ and hence the graph G_{f} is connected.

It follows from the above theorem that the components of the graph G_{f} is equal to the number of the equivalence classes generated by the relation \sim.

Theorem (3-2):

Let K and L be complexes
of the same dimension n, $f \in C(K, L)$ a cellular folding. Then each component of G_{f} is vertex transitive on itself.

Proof:

From Theorem(3.1) the
equivalence relation defined on the n-cells $K^{(n)}$ of K defines a partition $\left\{[\sigma], \sigma \in K^{(n)}\right\}$ on $K^{(n)}$, where each equivalence class represents a component of
G_{f}. Now, consider one of these components G_{f}^{i}, with say r vertices, i.e., $\left|V\left(G_{f}^{i}\right)\right|=r$. Each vertex of G_{f}^{i} is adjacent to the other
$\sigma \in K$ we can define a homomorphism
$f_{p}: C_{p}(K) \rightarrow C_{p}(L)$ by:
f_{p}
$\{f(\sigma)$, if $f(\sigma)$ is a p-cebloimplete, see Fig(5-b).
$=\left\{\begin{array}{cc} \\ \varphi, & \text { if } \operatorname{dim}(f(\sigma))\end{array}\right.$
And since cellular foldings map p-cells to p-cells [5], $f_{p}\left(\sigma_{\lambda}\right)$ is a p-cell in L for all
λ. Thus for a p-chain
$C=a_{1} \sigma_{1}^{p}+a_{2} \sigma_{2}^{p}+\ldots$
$+a_{k} \sigma_{k}^{p} \in C_{p}(K)$, where
$a_{\lambda}{ }^{\prime} s \in Z$ and $\sigma_{\lambda}{ }^{\prime} s$ are p -
cells in M,
$a_{1} f_{p}\left(\sigma_{1}^{p}\right)+a_{2} f_{p}\left(\sigma_{2}^{p}\right)+\ldots$
$f_{p}(C)=f_{p}\left(a_{1} \sigma_{1}^{p}+a_{2} \sigma_{2}^{p}+\ldots+a_{k} \sigma_{k}^{p}\right)=$
$+a_{k} f_{p}\left(\sigma_{k}^{p}\right) \in C_{p}(L)$.
Now, since the closures of both σ_{λ}^{p} and $f\left(\sigma_{\lambda}^{p}\right)$ have the same number of distinct vertices, then
$f_{p-1} o \partial_{p}=\partial_{p}^{\prime} o f_{p}$, where $\partial_{p}: C_{p}(K) \rightarrow C_{p_{-1}}(K)$ and $\partial_{p}^{\prime}: C_{p}(L) \rightarrow C_{p_{-1}}(L)$ are the boundary operators, that is to say the following diagram commutes

$$
\begin{array}{r}
C_{p}(K)-\stackrel{f_{p}}{\longrightarrow} C_{p}(L) \\
\left.\partial\right|_{p} \partial_{p} \\
C_{p_{-1}}(K) \xrightarrow{f_{p-1}} C_{p-1}^{\downarrow}(L)
\end{array}
$$

$\left(v_{4}, v_{5}\right)=\left(v_{3}, v_{2}\right), f\left(e_{4}, e_{5}, e_{6}\right.$,
$\left.e_{7}, e_{8}\right)=\left(e_{3}, e_{1}, e_{2}, e_{2}, e_{2}\right)$ and
$f\left(\sigma_{i}\right)=\sigma_{1}, i=1,2,3,4$. The
graph G_{f} in this case is
p - ceboimplete, see Fig(5-b).

$f(K)=L$

(b)

Fig.(5)

(4) Chain maps and

cellular folding:

The following theorem gives the necessary and sufficient condition for a cellular map to be a cellular folding.

Theorem(4-1):

Let K and L be complexes of the same dimension n and $f: K \rightarrow L$ be a cellular map such that $f(K)=L \neq K$.
Then f
is a cellular folding if and only if the map
$f_{p}: C_{p}(K) \rightarrow C_{p}(L)$, between
chain complexes
$\left(C_{p}(M), \partial_{p}\right),\left(C_{p}(N), \partial_{p}^{\prime}\right)$ is
a chain map.

Proof:

Let $f: K \rightarrow L$ be a cellular folding, then it is a cellular map and for each p-cell

$$
\begin{aligned}
& f\left(e_{i}\right)=e_{1}, i \\
& =1,11,21, \ldots, f\left(e_{i}\right)=e_{2}^{\prime}, i \\
& =2,12,22, \ldots, f\left(e_{i}\right) \\
& =e_{3}^{\prime}, i=3,8,13, \ldots, f\left(e_{i}\right) \\
& =e_{4}^{\prime}, i=4,9,14, \ldots, f\left(e_{i}\right) \\
& =e_{5}^{l}, i= \\
& 5,10,15, \ldots, f\left(e_{i}\right)=e_{6}, i \\
& =6,16,26, \ldots, f\left(e_{i}\right)_{n}=1 e_{7}^{\prime}, i \\
& =7,17 \text {, } \\
& \text { 27, ... and } f\left(\sigma_{i}\right) \\
& =\left\{\begin{array}{l}
\sigma_{1}^{\prime}, \text { if } i \text { is odd, } \\
\sigma_{2}^{/}, \text {if } i \text { is even }
\end{array} .\right. \\
& \text { is a cellular folding. }
\end{aligned}
$$

Fig.(6)
(b) Consider a complex K such that $|K|=S^{2}$, with cellular subdivision consisting of two 0 -cells, four 1-cells and four 2-cells. Let $f: K \rightarrow K$ be a cellular map defined by: $f\left(e_{2}, e_{4}\right)=$ $\left(e_{1}, e_{3}\right)$ and $f\left(\sigma_{i}\right)=\sigma_{1}$, $i=1, \ldots, 4$.
This map is a cellular folding with image consisting of two
and hence f_{p} is a chain map.
Conversely, suppose f is not a cellular folding then there exists a j-cell σ in K such that $f(\sigma)$ is an m-cell in L, where $j \neq m$. Since f_{p} is a homomorphism from the $p^{\text {th }}$ chain of K to the $p^{t h}$-chain of L, then $\sigma)=\sum_{i=1}^{n-1} \lambda_{i} f_{j}\left(\sigma_{i}^{(j)}\right)+\lambda_{n} f(\sigma)$, but $f(\sigma)$ is not a j-cell, then f_{j} cannot be a j-chain map and hence our assumption is false, and we have the result.

Examples (4-2):

(a) Let K be a complex such that $|K|$ is the infinite strip $\{(x, y): 0 \leq x \leq \infty$, $0 \leq y \leq l\}$ equipped with an infinite number of 2-cells such that the closure of each 2-cell consists of four 0-cells and four 1-cells, P_{4}. Let L be a complex with six 0-cells, seven 1-cells and two 2-cells, see Fig.(6). The cellular map $f: K \rightarrow L$ defined by:
$f\left(v_{i}\right)=v_{i}^{\prime}$ where
$i=1,2, \ldots, 6$,
$f\left(v_{i}\right)=v_{j}^{\prime}$, where
$j=1,2, \ldots, 6$ and $(i-j)$ is a multiple of 6 ,

1-cells and four 2-cells, see
Fig.(9).
Let $f: K \rightarrow K$ be a cellular map defined by $f\left(v_{i}\right)=v_{i}$, $i=1, \ldots, 4, f\left(e_{2}, e_{3}\right)=\left(e_{1}, e_{4}\right)$ and $f\left(\sigma_{i}\right)=\sigma_{2}, i=1, \ldots, 4$. This map is not a cellular folding since $\overline{\sigma_{1}}$ and $\overline{f\left(\sigma_{1}\right)}$ do not contain the same number of vertices.

Fig.(9)

Result (4-3):

Let $f: K \rightarrow L$, be a cellular folding. Then the induced homomorphism $f_{p}^{*}: H_{p}(K) \rightarrow H_{p}(L)$ will maps the generators of $H_{p}(K)$ to either the generators of L or to zeros. This follows directly from the fact that the chain map $f_{p}: C_{p}(K) \rightarrow C_{p}(L)$ defines a homomorphism that has this property [5].
(5)Homology groups and

neat cellular foldings:

The following theorem gives the necessary and sufficient condition for a

0 -cells, two 1 -cells and a single 2-cell, see Fig.(7).

$$
f(K)=L
$$

Fig.(7)
(c) Consider a complex K such that $|K|$ is a tours with cellular subdivision consisting of three 0 -cells, six 1-cells and three 2-cells. Any cellular map $f: K \rightarrow K$ which has two vertices in the image is not a cellular folding since f_{1} in this case is not a chain map, see
Fig.(8).

Fig.(8)
(d) Consider a complex K such that $|K|=S^{2}$, with cellular subdivision consisting of four 0 -cells, six

The exactness of this sequence implies that $H_{p}(K) \cong \operatorname{ker} f_{*}$.
Conversely, suppose f is a chain map between chain complexes and $H_{p}(K) \cong \operatorname{ker} f_{*}$ but f is not neat, then $L^{n}-L^{n-1}$ consists of more than one n-cell. Thus $H_{0}(L) \cong Z^{j}, H_{p}(L)=0$, for $p=1,2, \ldots, n$
and
$H_{p}(K) \cong H_{p}(L) \oplus \operatorname{ker} f_{*} \cong$ ker f_{*} for $p=0$, and hence the assumption is false and f is neat.

Reference:

[1] E.EL-Kholy and H.A.AlKhurasani, Folding of CW complexes, J.Inst.Math. Comp. Sci. (Math. Ser.), Vol.4,

No.1, (1991), 41-48
[2] E.EL-Kholy, M.Basher and M.Zeen EL-Deen, Perfect
folding of the plane, Soochow J. Math., Vol.
32,No.4, (2006), 521-532.
[3] E.EL-Kholy and N. ElSharkawey, The chromatic number and graph folding " European Journal of Scientific Research"
cellular map to be a neat cellular folding.

Theorem (5-1):

Let K and L be complexes of the same dimension n.
If $f \in C(K, L)$, then f is neat if and only if the map $f_{p}: C_{p}(K) \rightarrow C_{p}(L)$ between chain complexes $\left(C_{p}(M), \partial_{p}\right)$, $\left.C_{p}(N), \partial_{p}^{\prime}\right)$ is a chain map and $H_{p}(K) \cong \operatorname{ker} f_{*}$, where $f_{*}: H_{p}(K) \rightarrow H_{p}(L), p \geq 1$ is the induced homomorphisms.

Proof:

Assuming that f is a neat folding, then it is a cellular folding and hence the map $f_{p}: H_{p}(K) \rightarrow H_{p}(L)$ between the chain complexes
$\left(C_{p}(K), \partial_{p}\right),\left(C_{p}(L), \partial_{p}^{\prime}\right)$ is a chain map. Now consider the
induced homomorphism
$f_{*}: H_{p}(K) \rightarrow H_{p}(L)$, there is a short exact sequence
$0 \rightarrow \operatorname{ker} f_{*} \xrightarrow{i^{*}} H_{p}(K) \xrightarrow{f_{*}} \operatorname{Im} f_{*}$
where i^{*} is the induced homomorphism by the inclusion. Since f surjective, we have $\operatorname{Im} f_{*} \cong H_{p}(L)$, but $H_{p}(L)=0$ for neat cellular foldings, hence the above sequence will take the form

$$
0 \rightarrow \operatorname{ker} f_{*} \xrightarrow{i^{*}} H_{p}(K) \rightarrow 0
$$

York, (1993).
[8] Klaus Janich, Topology, Springer Verlag, New York, Berlin

Heidelberg Tokyo, Regensburg, (May 1983).
[9] R.Fenn, Techniques of geometric topology, Cambridge

Univ. Press, U.K. (1983).
[10] S.A.Robertson, Isometric folding of Riemannian manifolds,

Proc. Roy. Soc. Edinburgh, (1977), 275-284.
[11] Walter Ledermann, Introduction To Group
Theory, London
(1973).

Vol.120, No. 1 (2014).
[4] E.EL-Kholy, R.EL-Said and Salama N.Daoud, Graph

Folding and incidence matrices, Int.J.Math.
Combin, Vol.2,
(2013), 97-115.
[5] E.El-Kholy and R.M.Shahin, Cellular folding, J.Inst.Math. \&

Comp.Sci. (Math.Ser.) Vol.11, No. 3 (1998)177-181. [6] H.R.Farran, E.El-Kholy and S.A.Robertson, "Folding a surface to a polygon" Geometriae Dedicata 63 (1996) 255-
266.
[7] Kinsey, L.C.: Topology of surfaces, Springer Verlag, New

المخططات المنشأه والدوال السلسلية

فى هذا البحث تم تعريف المخطط المنشأ G ${ }^{\text {ت }}$ والمرتبط بالطى الظلوى على التنر اكيب -CW المنتظمه. هذه المخططات توضح تأثير الطى الخلوى على المركب. بجانب ذلك قـمنا خو اص هذا المخطط و أثبتنا إنه مخطط متر ابط وله تأثبر متعد على الرؤوس (vertex transitive) إذا كان الطى الخلوى صافى. وأخيرا بإستخدام

الدوال السلسلية والزمر الهومولوجية حصلنا على الشرط الكافى والضرورى لجعل الدالة الخلويه طى خلوى وطى خلوى صافى على التوالى.

أولا: تم تقديم تعريف المخطط المنشأ مع إعطاء بعض من الأمثلة التى توضح هذا التعريف.

ثانيا: تم توضيح خواص هذا المخطط للطى الخلوى وللطى الصافى على النو الى وأثبتنا التالى:
(1) المخطط المنثأ يكون غير مترابط إلا إذا كان الطى الخلوى هو طى صافى. (2) لأى طى خلوى يكون كل مركب من مركبات المخطط المنشأ هو تأثير متعد على رؤوس المركبة.
ثـالثا: درسنا حالة أن تكون الدالة الخلويه هى طى خلوى وحصلنا على الشروط المتحققه بو اسطة المخططات المنثأة للحصول على الطى المتتابع. رِابعا: درسنا نفس المشكلة ولكن بالنسبه للطى الصافى ولقد حصلنا على الشروط المتحققه بدلالة الزمر الهومولوجية.

