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 Abstract In this paper, we introduce a new solution of the Euler’s dynamic equations for the rotational motion of a rigid body 
about a fixed point under the action of a Newtonian force field. The components of the angular velocity vector for this solution are 
differing from the most famous cases. We assumed that the center of mass of the rigid body coincides with the fixed point and a 
restriction on an initial condition is applied. The obtained solution is represented graphically using most recent computer codes to 
describe the motion at any time and is considered as a modification of Euler’s case. 
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Introduction: 

The rotational motion of a rigid body about a fixed 
point in a Newtonian force field is one of the 
important problems in theoretical classical 
mechanics. This problem attracted the interest of 
many researchers during the last five decades e. g. 
[1-7]. The great importance of this research subject 
is due to the wide range of its applications in 
mechanics. To solve these problems we need to deal 
with intricate techniques because they are governed 
by a system contains six non-linear differential 
equations besides with three first integrals [8]. The 
exact solutions of such systems require an additional 
fourth algebraic first integral. Many researches 
realized such integral for famous special cases, 
which have some restrictions on the body center of 
mass location and on the torques acting on the body 
[9]. 

The perturbed rotational motion of a heavy solid 
close to regular precession with constant restoring 
moment was treated in [2] and [3]. The authors 
assumed some initial conditions to achieve the 
analytical solutions of the equations of motion using 
averaging method [10] up to the first and second 
approximations. The rotatory motion of a symmetric 
gyrostat about a fixed point when one component of 
the gyrostatic torque is applied and in the presence of 
some torques was considered in [4] and generalized 
in [5]. The motion of an electromagnetic gyroscope 
is investigated in [6] when a Newtonian field, 
perturbed moments and restoring ones are applied. 
The averaging technique [10] is used to obtain the 
first order approximate analytical solutions. The 
graphical representations of these solutions are 
presented to describe the motion at any instant. The 
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rotational motion of that body under the action of a 
Newtonian force field with the application of the 
third component of a gyrostatic moment is 
investigated in [7]. The approximate periodic 
solutions of the governing equations are obtained 
using the small parameter method of Poinacré [11]. 
This method and its modifications [12-13] are used 
in [14] to construct the periodic solutions of limiting 
case for the motion of a rigid body about a fixed 
point in a Newtonian force field. 

The rotational motion of a heavy solid about a fixed 
point in the presence of a gyrostatic moment vector 
is presented in [15]. The authors supposed that the 
body has rapidly spinning about the major or the 
minor principal axis of the ellipsoid of inertia. 
Krylov-Bogoliubov-Mitropolski technique [10] is 
modified and used to achieve the periodic solutions 
of the equations of motion. 

The perturbed self-excited rigid body problem with a 
fixed point is investigated in [16]. The averaging 
theory [17] is used to study the periodic orbits up to 
first order. In [18], the authors presented the 
possibility of constructing exact analytic solutions 
concerning the dynamic Euler equations of motion. 

The spinning motion of the hovering magnetic top 
and its dynamic stability were analyzed in [19] and 
[20]. The numerical integration of a heavy magnetic 
top is investigated in [21]. 

Existence of periodic motions of a rigid body was 
investigated in [22]. The small parameter method 
was used to obtain the periodic solutions of the 
equations of motion. The center of mass of the body 
is slightly shifted from a dynamically symmetric 
axis. The generalization of this problem was treated 
in [23] when the body rotates under the action of a 
Newtonian field and in the presence of one 
component of the gyrostatic moment vector. A new 
exact solution of the equations of motion of a rigid 
body is investigated in [24] when the body moves 
under the action of a uniform force field. The author 
assumed that the center of mass of the body is 
located at meridional plane and the principal torques 
of inertia satisfied a simple algebraic condition.  

In this work, we extend the previous studies when 
the rigid body moves under the action of a 
Newtonian force field arising from an attracting 
center located on the downward fixed axis. We 
assume that the center of mass of the body coincides 
with the fixed point (origin). The achieved solution 
is obtained after taking account some algebraic 
assumptions concerning on the moments of inertia. 
This solution is represented graphically, in the rest of 
this paper, to show the behavior of the body motion 

under the action of Newtonian force field. From this 
point of view, the current study may be regarded as a 
modification of Euler’s case for the motion of a rigid 
body.  

2. Equations of motion 

Consider the motion of a heavy rigid body that 
rotates about a fixed point O , in the body, under the 
influence of a Newtonian force field arising from an 
attracting center 1O  being located on a downward 

fixed axis passing through the fixed point O .  Let 
OXYZ  be a fixed coordinate system and another 
moving one Oxyz  which is fixed in the body and 
whose axes are directed along the principal axes of 
inertia of the body with origin O . The equations of 
motion are given below [14] 
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where BA,  and C  are the principal moments of 
inertia of the body; qp ,  and r  are the projections 

of the angular velocity V  of the body on the 

principal axes of inertia; ),,( 321    is  the 

unit vector in the direction of the Z -axis; M  is the 
mass of the body; g  is the gravitational acceleration; 

00 , yx  and 0z  are the coordinates of the center of 

mass in the moving coordinate system Oxyz .  The 
overdot here refers to differentiation with respect to 

the time t  and )/3( 3RN   where R  is the 

distance from the fixed point O  to the attracting 
center 1O  and   is the coefficient of such center. 

Equations (1) and (2) admit the following three first 
integrals 
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where 0C  and 1C  are constants.  

3. Euler’s case 
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As in Euler’s case, we obtain the following first 
fourth integral according to the presence of 
Newtonian field  
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Making use of the first two integrals in (3) and the 
fourth integral (4), one obtains 
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Substituting from systems (1) and (2) into the third 
equation of system (3), one gets 
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Equation (6) represents a linear combination of the 
first integrals (3), the fourth integral (4) and (5). So, 
we seek for a solution that satisfies the previous 
equation (6). 

4. The modified solution  

For our scope, let us consider the following choice 
together with the assumptions of Euler’s case 

 .CBA   

This choice allows us to rewrite equation (6) in the 
form 
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Substituting from (7) into (4), we can obtain directly 
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The substitution from (8) into (7) gives 
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Substituting from equalities (8) and (9) into the third 
one of the system of equations (1), we get 
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Under the present circumstances, the solution of the 
previous integration can be obtained easily as 
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An inspection of equations (8), (9) and (10), broadly 
speaking, provides the solution of the problem when 
the rigid body rotates under the action of a 
Newtonian force field. This elucidates that, we can 
separately determine the components of the angular 
velocity vector p , q  and r as functions of time t  
from these equations. Consequently, we can obtain 
directly the scalar value of the angular velocity 
vector in the form 
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5. Discussion of results  

In this section, our aim is to provide some numerical 
results using the computer programs. The following 
data are used to determine the motion in the 
considered problem 
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Figures (1-4) show the variation of the angular 
velocity V versus time t  in 2-D plane when 

2/.200 smkgN   and 2/.400 smkgN  . It is to 
be noted that, the value of the angular velocity of the 
body monotonically increases with the increase in 
time (see figures 1, 3) till it has attained its 
maximum value whenever 8Ckt  , i.e. when the 

dominator of the second bracket in equation (11) 
vanishes, at different values of Newtonian force 
field. The domain of equation (11) is 

}{}0{ 8Ck  and its range is }0{ , 
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where   is the positive real numbers, 
0)( 64 CC  and 0)1( 57  CC .  

Above the value 8Ckt  , the numerical 

computations show that the angular velocity  
gradually decreases as the time goes on, in a similar 
manner to its increase, (see figures 2, 4). Further, we 
observe that the growth in the value of Newtonian 
force field leads to increase in t  and V as well. 

To make the results more favor, we proceed to 
illustrate the numerical results in 3-D space. Figures 
(5-7) and (8-10) represent the behavior of the angular 
velocity V and time t  via )( tV   when the 
Newtonian force field equals to 200 and 400, 
respectively. It should be noticed that figures (5, 8), 
(6, 9) and (7, 10) describe the behavior of the body 
below, near and above the maximum value of time 
t , respectively. The spatial figures for most values of 
Newtonian force field are presented; see figures (11-
16). 

It is clear from all previous figures that, the 
Newtonian force field has acquired a significant 
influence on the behavior of our model. Such results 
may be utilized in many industrial applications in 
various fields; like satellite, spacecraft and 
manipulators. 
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6. Conclusion 

In this work, we have developed a modified solution, 
represented by (8)-(10), for the Euler’s dynamic 
equations (1) with the aid of Poinsot’s equations (2), 
when the rigid body rotates under the action of a 
Newtonian force field. The obtained angular velocity 
components are different from Lagrange’s case, 
Kovaleveskaya’s case, Euler’s case (when the body 
rotates without any applied torques) or from any 
special case. A restriction on the choosing of initial 
conditions of )0(),0(),0(),0(),0( 21 rqp  or 

)0(3  according to the meaning of 2
0C  is 

considered. The obtained solution is considered as a 
modification for both Euler’s case and Ershkov [24] 
work when the Newtonian filed has no effect, i.e. 
vanishes. The graphical representations of the 
obtained angular velocity solution are presented 
through different figures. The numerical results have 
shown that the Newtonian force field value has an 
important effect on the rigid body motion. However, 
the analytical results of the rotational motion of a 
rigid body about a fixed point can be exploited in 
industrial applications, such as satellites, autopilots 
and aircrafts. 
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  تقديرات أعلى لحل جسم متماسك ثقيل يتحرك  تحت تأثير مجال نيوتوني

في هذا البحث تم دراسة إيجاد حل جديد لمعادلات أويلر الديناميكية للحركة الدورانية للجسم المتماسك حول نقطة ثابتة تحت تأير مجال 
هذا الحل تختلف عن معظم الحالات الخاصة المشهورة، نيوتيوني، مع الأخذ في الاعتبار أن مركبات متجه السرعة الزاوية الخاصة ب

وبفرض أن مركز الكتلة للجسم المتماسك ينطبق على نقطة الأصل مع تطبيق شروط إبتدائية معينة. وتم تمثيل الحل الذي تم الوصول 
 لاً لحالة أويلر.إليه هندسياً باستخدام برامج حديثة وذلك لوصف الحركة عند أية لحظة زمنية، ويعتبر هذا الحل تعدي

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


