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Abstract In this paper, we introduce a new solution of the Euler’s dynamic equations for the rotational motion of a rigid body
about a fixed point under the action of a Newtonian force field. The components of the angular velocity vector for this solution are
differing from the most famous cases. We assumed that the center of mass of the rigid body coincides with the fixed point and a
restriction on an initial condition is applied. The obtained solution is represented graphically using most recent computer codes to
describe the motion at any time and is considered as a modification of Euler’s case.
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Introduction:

The rotational motion of a rigid body about a fixed
point in a Newtonian force field is one of the
important problems in theoretical classical
mechanics. This problem attracted the interest of
many researchers during the last five decades e. g.
[1-7]. The great importance of this research subject
is due to the wide range of its applications in
mechanics. To solve these problems we need to deal
with intricate techniques because they are governed
by a system contains six non-linear differential
equations besides with three first integrals [8]. The
exact solutions of such systems require an additional
fourth algebraic first integral. Many researches
realized such integral for famous special cases,
which have some restrictions on the body center of
mass location and on the torques acting on the body

[9].

The perturbed rotational motion of a heavy solid
close to regular precession with constant restoring
moment was treated in [2] and [3]. The authors
assumed some initial conditions to achieve the
analytical solutions of the equations of motion using
averaging method [10] up to the first and second
approximations. The rotatory motion of a symmetric
gyrostat about a fixed point when one component of
the gyrostatic torque is applied and in the presence of
some torques was considered in [4] and generalized
in [5]. The motion of an electromagnetic gyroscope
is investigated in [6] when a Newtonian field,
perturbed moments and restoring ones are applied.
The averaging technique [10] is used to obtain the
first order approximate analytical solutions. The
graphical representations of these solutions are
presented to describe the motion at any instant. The
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rotational motion of that body under the action of a
Newtonian force field with the application of the
third component of a gyrostatic moment is
investigated in [7]. The approximate periodic
solutions of the governing equations are obtained
using the small parameter method of Poinacré [11].
This method and its modifications [12-13] are used
in [14] to construct the periodic solutions of limiting
case for the motion of a rigid body about a fixed
point in a Newtonian force field.

The rotational motion of a heavy solid about a fixed
point in the presence of a gyrostatic moment vector
is presented in [15]. The authors supposed that the
body has rapidly spinning about the major or the
minor principal axis of the ellipsoid of inertia.
Krylov-Bogoliubov-Mitropolski technique [10] is
modified and used to achieve the periodic solutions
of the equations of motion.

The perturbed self-excited rigid body problem with a
fixed point is investigated in [16]. The averaging
theory [17] is used to study the periodic orbits up to
first order. In [18], the authors presented the
possibility of constructing exact analytic solutions
concerning the dynamic Euler equations of motion.

The spinning motion of the hovering magnetic top
and its dynamic stability were analyzed in [19] and
[20]. The numerical integration of a heavy magnetic
top is investigated in [21].

Existence of periodic motions of a rigid body was
investigated in [22]. The small parameter method
was used to obtain the periodic solutions of the
equations of motion. The center of mass of the body
is slightly shifted from a dynamically symmetric
axis. The generalization of this problem was treated
in [23] when the body rotates under the action of a
Newtonian field and in the presence of one
component of the gyrostatic moment vector. A new
exact solution of the equations of motion of a rigid
body is investigated in [24] when the body moves
under the action of a uniform force field. The author
assumed that the center of mass of the body is
located at meridional plane and the principal torques
of inertia satisfied a simple algebraic condition.

In this work, we extend the previous studies when
the rigid body moves under the action of a
Newtonian force field arising from an attracting
center located on the downward fixed axis. We
assume that the center of mass of the body coincides
with the fixed point (origin). The achieved solution
is obtained after taking account some algebraic
assumptions concerning on the moments of inertia.
This solution is represented graphically, in the rest of
this paper, to show the behavior of the body motion
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under the action of Newtonian force field. From this
point of view, the current study may be regarded as a
modification of Euler’s case for the motion of a rigid
body.

2. Equations of motion

Consider the motion of a heavy rigid body that
rotates about a fixed point O, in the body, under the
influence of a Newtonian force field arising from an

attracting center O, being located on a downward

fixed axis passing through the fixed point O. Let
OXYZ be a fixed coordinate system and another
moving one Oxyz which is fixed in the body and
whose axes are directed along the principal axes of

inertia of the body with origin O. The equations of
motion are given below [14]

Ap+(C=B)qr=Mg(y,z,-7; )+ N(C=B)y, 75,

Bg+(A-C)rp=Mg(ysx,—7,20)+ N(A-C)y, 7y,

Cr+B-A)pg=Mg(y,yy =7, %)+ NB-Ay,7,,
(1

with

7:/121’]/2—(]]/3, 72=DVs TV @)

V3=4Y1 =PV

where A, B and C are the principal moments of
inertia of the body; p, g and r are the projections
of the angular velocity V of the body on the
principal axes of inertia; y =(y,,7,,7; ) is the

unit vector in the direction of the Z -axis; M is the
mass of the body; g is the gravitational acceleration;

Xy, ¥, and z, are the coordinates of the center of
mass in the moving coordinate system Oxyz. The
overdot here refers to differentiation with respect to
the time ¢ and N =(3A/R’) where R is the
distance from the fixed point O to the attracting
center O, and A is the coefficient of such center.

Equations (1) and (2) admit the following three first
integrals

YAy +Ys =1,
Apy,+Bqy, +Cry, =C,, 3
(Ap2 +Bq2 +Cr2)+2Mg(x0 Y1+ VoV

+2073) + N(4y] +By; ++Cy3) =2C,
where C, and C| are constants.

3. Euler’s case
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As in Euler’s case, we obtain the following first
fourth integral according to the presence of

Newtonian field
A’ p* +B*q’ +C’r* —=N(BCy; @
+CA;/22 +AB;/32) = C(f.

Making use of the first two integrals in (3) and the
fourth integral (4), one obtains
Ap _ Bgq _Cr

Vi = s Vo = > V3
G,

C, C, ©)

Substituting from systems (1) and (2) into the third
equation of system (3), one gets

CI(N A +D)Ap* +(N'B* +1)Bg +(N'C’ +1)Cr]

6
+x, Ap+y, Bq+z,Cr=G, ©
where

C c,C .
)= o C, =071 N ziz_
2M g Mg C,

Equation (6) represents a linear combination of the
first integrals (3), the fourth integral (4) and (5). So,
we seek for a solution that satisfies the previous
equation (6).

4. The modified solution

For our scope, let us consider the following choice
together with the assumptions of Euler’s case

A>B>C.

This choice allows us to rewrite equation (6) in the
form

. _2C,-N;Bg’ - N;Cr’
N; 4

p , (7)

where

N =N"A*+1, N;=N'B*+1, N;=N'C*+1.

Substituting from (7) into (4), we can obtain directly

g” in the form

g =C,-C,r’. (8)

Here,

3 [C: —(2C, A/ N)+(2C,N"ABC/ N,)]
[1—-N"AC—(N;A/N;B)+(N"N;AC/N;)|B*’

_[I=N"AB—(N;A/N;C)+(N'N; 4B/ N;)IC*
[1-N"AC—(NiA/N;B)+(N'N:AC/N B>

4

5

The substitution from (8) into (7) gives
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P =C,+C,r’;
Cs =(2C, —N; BC,)/ N; 4, )
C7=(A[;BC5 _N;C)/N;A

Substituting from equalities (8) and (9) into the third
one of the system of equations (1), we get

dr
f :jdt.
[(4-B)/CIJ(Cy +C,)(C, = Cy) r°

Under the present circumstances, the solution of the
previous integration can be obtained easily as

r=k—-A-B/CY(G+C)C~C) 1} sk=const (10)

An inspection of equations (8), (9) and (10), broadly
speaking, provides the solution of the problem when
the rigid body rotates under the action of a
Newtonian force field. This elucidates that, we can
separately determine the components of the angular
velocity vector p, g and ras functions of time ¢

from these equations. Consequently, we can obtain
directly the scalar value of the angular velocity
vector in the form

1} (11)

1+C, - C,

v =|y|=
i (k—C, 1)’

\/(C4 +Co) +[

where

Cy =[(4=B)/CIJ(C, +C;)(C, = C5) .

5. Discussion of results

In this section, our aim is to provide some numerical
results using the computer programs. The following
data are used to determine the motion in the
considered problem

A=Tkgm’, B=6kgm®,C=4kgm’, M =100kg,
g=9.8m/s*, N=(200400500kgm/s’

Figures (1-4) show the variation of the angular
velocity V versus time ¢ in 2-D plane when

N =200kg.m/s*> and N =400kg.m/s>. It is to

be noted that, the value of the angular velocity of the
body monotonically increases with the increase in
time (see figures 1, 3) till it has attained its
maximum value whenever ¢ =k/C, , i.e. when the

dominator of the second bracket in equation (11)
vanishes, at different values of Newtonian force
field. The domain of equation (11) is

R U{0}—{k/Cy} and its range is R"U{0},
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where R* is the positive real numbers,
(C,+C,)>0 and (1+C, —C,)>0.

Above the value ¢=4k/Cy, the numerical

computations show that the angular velocity
gradually decreases as the time goes on, in a similar
manner to its increase, (see figures 2, 4). Further, we
observe that the growth in the value of Newtonian
force field leads to increase in ¢ and J as well.

To make the results more favor, we proceed to
illustrate the numerical results in 3-D space. Figures
(5-7) and (8-10) represent the behavior of the angular
velocity V and time ¢ via & =(V —t) when the

Newtonian force field equals to 200 and 400,
respectively. It should be noticed that figures (5, 8),
(6, 9) and (7, 10) describe the behavior of the body
below, near and above the maximum value of time
t, respectively. The spatial figures for most values of
Newtonian force field are presented; see figures (11-
16).

It is clear from all previous figures that, the
Newtonian force field has acquired a significant
influence on the behavior of our model. Such results
may be utilized in many industrial applications in
various fields; like satellite, spacecraft and
manipulators.
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6. Conclusion

In this work, we have developed a modified solution,
represented by (8)-(10), for the Euler’s dynamic
equations (1) with the aid of Poinsot’s equations (2),
when the rigid body rotates under the action of a
Newtonian force field. The obtained angular velocity
components are different from Lagrange’s case,
Kovaleveskaya’s case, Euler’s case (when the body
rotates without any applied torques) or from any
special case. A restriction on the choosing of initial

conditions  of  p(0), ¢(0),(0),7,(0),7,(0) or

75(0) according to the meaning of C, is

considered. The obtained solution is considered as a
modification for both Euler’s case and Ershkov [24]
work when the Newtonian filed has no effect, i.e.
vanishes. The graphical representations of the
obtained angular velocity solution are presented
through different figures. The numerical results have
shown that the Newtonian force field value has an
important effect on the rigid body motion. However,
the analytical results of the rotational motion of a
rigid body about a fixed point can be exploited in
industrial applications, such as satellites, autopilots
and aircrafts.
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