In vivo effects of diminazene aceturate (berenil) on Trypanosoma evansi infection in mice: a scanning electron microscopy study.

Nabila M. Mira, Said E. Amer and Magdy E. Mahfouz
Department of Zoology, Faculty of Science, Kafrelsheikh University

ABSTRACT
Chemotherapy is the main approach of trypanosomal control. This study aims to examine the efficiency of the commonly used antitrypanosomal drug Diminazene aceturate (DIMA) or Berenil against Trypanosoma evansi, in vivo. The criteria used for assessment of the antitrypanosomal effect included the examination of the host blood as well as monitoring the morphological changes in T. evansi as seen by SEM. Sixty Swiss albino mice, groups of fifteen, were employed. These animals were divided into four groups; non-infected and non-treated control, infected with locally isolated T. evansi strains receiving no treatment, infected-treated with DIMA (20mg/kg) sacrificed after 4 and 8 h post treatment, respectively. SEM demonstrated that infection with T. evansi produced several alterations in RBCs structure including the appearance of microspherocytes, schistocytosis, aggregation, doughnut-cell formation, keratocytosis and increment of the biconcave appearance of cell diskocytes. In addition, RBCs were constantly observed to adhere firmly to trypanosomes. After 4 and 8h of DIMA treatment, the cells aggregated were dispersed and the biconcave disk shapes of RBCs create large and stable contact area between adjacent cells. These results also indicated that, in comparison to the untreated group that display normal T. evansi morphology and surface topology, parasite exposed to DIMA for 4h revealed a number of morphological alterations in the body shape including rounding of the parasite’s body and in several instances, shortening of the flagellum. Following 8h of treatment, drastic morphological changes were observed with torsion and shortening of the body, sometimes with the aspect of a tadpole-shape and a pronounced reduction in the size of the parasite, while the region of the free flagellum was preserved. This study demonstrates the potential of DIMA in vivo in the treatment of trypanosomiasis.

Key words: Diminazene, Trypanosoma evansi, Mouse infection, Scanning electron microscopy

INTRODUCTION
Trypanosomes (T), single-celled blood parasites, are a wide range of blood parasites which cause trypanosomiasis in both human and animal species such as T. rhodesiense, T. vivax, T. brucei, T. gambiense, T. congolense and T. evansi (Alsaffaret et al., 2007). The protozoan parasite T. evansi causes a trypanosomosis disease that is known as surra. It affects a large number of wild and domesticated animal species in Africa, Asia, and Central and South America. The principal host species varies geographically, but camels, horses, buffalos and cattle are particularly affected, although other animals, including wildlife, are also susceptible. In Egypt, the disease causes significant losses in camels, beside considerable economic damage due to a decrease in milk and meat, premature births and abortions (Abdel-Rady 2008). As an arthropod-borne disease; several species of haematophagous flies, including Tabanids and Stomoxes, are implicated in transferring infection from host to host, acting as mechanical vectors (Womacket et al., 2001; WHO, 2006; Adeymiet al., 2009).

Because of their presence in the blood, Trypanosomes produce numerous changes in the cellular and biochemical constituents of blood (Igbokwe and Mohamed, 1992; Taiwo et al., 2003). For example, Trypanosoma brucei infection leads to increased red blood cell destruction that results in anemia as well as tissue damage (Ekanem and Yusuf, 2008; Akanjiet al., 2009). Whereas, rabbits experimentally infected with T. evansi produced a number of morphological changes in RBCs including the presence of anisocytosis, pokilocytosis, target cells, macrocytes, Howell-Jolly bodies, Burr cells (as an indicator of renal failure) and stomatocytes (Alsaffaret et al., 2007).

Control of trypanosomiasis depends mainly on the use of curative and prophylactic drugs as insect control within the
necessary scale is prohibitively expensive and vaccine development seems particularly impossible because of the process of antigenic variation of African trypanosomes (Teka et al. 2009). One of the few drugs available for chemotherapy of animal infections of the haemoflagellate parasitic protozoa T. brucei rhodesiense, T. congolense and T. vivax is DIMA (Berenil®; Hoechst, Germany) or triazenediaceturate, tetrahydrate, usually referred to simply as diminazene) whose trypanocidal activity was first reported by Bauer (1955 a,b) and Fussganger (1955). Its usefulness and tolerance has been extensively investigated (Anecnet et al., 1997 and Tuntasuvanet al., 2003). Many investigators have reported therapeutic trials of T. evansi with the use of different chemotherapeutic drugs (Homida et al., 1980; Bachiet al. 1998 and Tuntasuvanet al., 2003). Single doses of 10 and 20 mg/kg of berenil given intraperitoneally to infected mice, produced a complete elimination of the protozoon and caused a slow tissue recovery mirrored in the persistence of lesions in different organs (Elamin et al., 1982). The pharmacokinetic of diminazene alone has been investigated in sheep and goat (Mammanend Peregrine, 1994), cattle (Klat and Hajdu, 1976; Aliuet al., 1993), pregnant and lactating caws (Madachiet al., 1995) and caw calves (Kellnet et al., 1985; Kuaret al., 2000). Furthermore, the efficacy of DIMA in the control of the T. evansi infection in a number of hosts such as cats (Da Silva et al., 2009) and rats (Toniet al., 2011) was examined. However, the mechanism of action and in vivo behavior of the drug is still poorly understood (Miller, 2005) and in turn the ultrastructure changes in the parasite as well as the blood using SEM.

Materials and methods

Animals

T. evansi has a broad spectrum of infectivity for small rodents and mice are often used to reveal subclinical (non-patent) infections in domesticated animals (Monzonet al., 1990). Sixty outbred Swiss albino mice weighting between 25-30 gm and aged 3-4 months were utilized. They were fed on control diet containing 200 gm protein/kg ad libitum. The animals were divided into 4 groups of 15 animals, each.

Parasite

T. evansi strain was derived from naturally infected camels brought to El-Basatein abattoir, Cairo-Egypt. Five milliliters of heparinized blood were collected from each camel. Mice were intraperitoneally (i.p.) inoculated with one millilitre heparinized blood of positively infected camels. To establish an in vivoculture system, the parasite was injected into uninfected mice i.p. and maintained in other mice by repeated passing. Animals were bled from the tail after every 48 hours to detect parasitaemia. A wet film and haemocytocrit buffy coat methods (Murrayet al., 1983) were used for the initial detection of parasitaemia. The degree of parasitaemia was estimated as previously described (Herbert and Lumsden, 1976). Infection was allowed to develop for 72 hours before treatment was initiated (Adenike and Stephen, 2010).

Drug:

DIMA (Berenil®, Hoechst, Germany) was dissolved and reconstituted in distilled water according to manufacturer's instructions and administered i.p. to animals in a concentration of 20 mg/kg as recommended by a number of researchers (e.g. Elamin et al., 1982).

Treatment of Animals

The animals were divided as follows and received the appropriate dosage of the drug that corresponds to their body weight:

A- Group I- control; uninfected and non-treated that received neither infection nor treatment.

B- Group II- infected with an inoculum of T. evansi parasites and received no drug treatment.

C- Group III- infected with an inoculum of T. evansi parasites and treated with DIMA. The animals were sacrificed after 4 hours post treatment.

D- Group IV- similar to group III but animals were sacrificed after 8 hours post treatment.

Scanning electron microscopy (SEM)

Parasites and blood were fixed with 2.5% glutaraldehyde, 2% formaldehyde in 0.1M cacodylate buffer (pH 7.2) for 1 hour at room temperature under constant agitation. The fixed parasites were then decanted overnight on glass coverslips precoated with 0.01% poly-L-Lysin. The coverslips were washed three times with 0.1 M cacodylate pH 7.2 (10 minutes each) and then incubated with 1% osmium tetroxide in the same buffer for 30 minutes at room temperature, washed with cacodylate buffer and treated for 30 minutes with 1% tannic acid solution. After this treatment coverslips were washed twice in distilled water (10 minutes each) and impregnated once more with 1% osmium tetroxide (30 minutes), gradually dehydrated in ethanol solutions (70, 90 and 100%) and dried in a Balzers CPD 030 apparatus. The slides were mounted, gold coated in a Balzers SCD 050, and examined with JEOL 5300 electron microscope in the Faculty of Science, Alexandria University.

Results

Group I

The RBCs in this group showed normal architecture with a pronounced biconcave disk shape that creates a large and stable contact area between adjacent cells (Fig. A).

Group II

In this group of infected and untreated animals, parasitaemia was noticed to develop 6 days post infection. T. evansi exhibited typical ultrastructural features similar to those of other trypanosomes with elongated body, normal morphology and surface topogas as well as a typical free flagellum extension. The flagella arise and extend forming undulating membrane, which is thrown into folds, characterized broadly in certain parts and narrow in others (Figs. 1, 2, 3).

T. evansi infection produced several alterations in RBCs structure. These included fusions of erythrocytes, aggregation, disintegration and cell swelling rupture that yielded erythrocyte ghosts (Figs. 5, 6). In addition, a number of morphological changes in RBCs structure were displayed such as the appearance of microspherocytosis, schistocytosis, vacuolation, doughnut-cell formation, and keratocytosis. Also, the thickness and cell diameter of the biconcave diskocytes increased in comparison to control group I. Meanwhile, RBCs were constantly observed to adhere firmly to the parasite (Figs. 7, 8, 9, 10).

Group III

Following 4 h of DIMA treatment, SEM examination of T. evansi showed a number of morphological changes in the shape of trypanosomes. A pronounced reduction in the size of the parasite was evident while the region of the undulating
membrane and free flagellum were preserved (Fig. 11, 12). The treatment led to rounding of the parasite’s body and swelling, meanwhile the cytoplasm contained many granules (Figs. 11,12,13,14). Also DIM A treatment led to deformation and disintegration of some parasites (Fig. 13). The surface view of the blood in this group showed that the aggregation of RBCs, noticed in group II, is reduced (Fig. 15).

Group IV

In this group where animals were treated with DIMA and scarified after 8h, SEM revealed the development of further morphological changes. These included more rounding and shortening of the body, sometimes with aspects of tadpole shape (Figs. 16, 17, 18, 19). The surface view of the RBCs seems to be much close to normal when compared to the control group (Fig. 20).

Discussion

We have characterized some morphological changes that occur in response to DIMA (Berenil) treatment of T. evansi, in vivo. The results obtained from this study clearly demonstrated that DIMA was a powerful antitrypanosomal compound with a specific in vivo activity. Extensive controversy results could be perceived concerning the efficacy of acertain drug in both in vivo and in vitro studies. Kaminsky and Zweygarth (1989) reported that care must be taken when evaluating anti-trypanosomal drugs for in vitro potency because drugs might be inactive in the in vitro system but still be efficacious in vivo.

In the present study, a rapid rise in T. evansi parasitaemia was noticed. Such event is considered as a feature of this strain of trypanosome. Trypanosomes have the capacity to divide very rapidly resulting in their large population in the blood stream of host animal within short time (Umar et al., 2007).

Although DIMA did not completely eliminate the parasites from the blood stream of infected mice during the course of the study, but reduced the level of parasitaemia and induced drastic morphological changes. In the presence of DIMA, T. evansi presented changes in the cell morphology, which is characterized by a shorter and broader form than the typical long slender form found in the untreated group. One of the most evident morphological changes was the rounding of the body with occasional presence of a tadpole formation, while the region of the free flagellum was preserved. These morphological alterations agree with the findings of other researchers (e.g. Souto-Pardon et al., 1984 and Salomoaet al., 2010) who reported that morphological alterations, such as pronounced reduction in the size of the parasite and surface shrinkage, induced by megazol and its analogues may indicate destabilization of cytoskeleton components or microtubule-associated proteins. Cyrus et al. (1983) reported that a-DL-Difluoromethylornithine treatment progressively limits the parasite's ability to synthesize nucleic acids and blocks cytokinesis while inducing morphological changes resembling long slender short stumpy transformation. Also, parthenolide induced morphological alterations in the body shape of trypanomastigote forms, causing rounding and shortening of the parasite and loss of integrity of the plasma membrane (Pelizzaro et al., 2010). Meanwhile, the effect of Suramin on trypanomastigote forms of T. cruzi has been previously reported to inhibit cell enzymes and to affect the synthesis and distribution of cytoskeleton proteins (Danielle et al., 2006). Trypanin is a cytoskeletal connection between the flagellar apparatus and the subpellicular cytoskeleton. Procyclic trypanomastigotes lacking trypanin lost their ability to coordinate flagellar beats and were incapable of directional cell motility (Hutchings et al., 2002).

Chemotherapeutic drugs disrupt or block one or more of the vital processes effects on some enzyme system or block essential metabolic pathways. The exact way in which they work is often not known or only incompletely understood (Zhang et al., 1991). Chemotherapy by stopping the multiplication of trypanosomes helps the immune system to overcome the infection (Osman et al., 1992). The prophylactic action of DIMA, in the field, would be enhanced by the host immune response (Gilbert, 1983). DIMA induced respiration deficient petite mutations in Saccharomyces cerevisiae (Mahler and Perlman, 1973; Perlman and Mehler 1973; Villa and Julian, 1980). It is thought that DIMA binds to yeast mitochondrial DNA (Perlman and Mahler 1973; Mahler 1973). Again, whether these findings are relevant to mammals is unknown although they appear to be involved in the trypanocidal activity of the drug possibly in association with the inhibitory effects of diamine oxidase and S-adenosylmethionine decarboxylase (Balana-Foueet al., 1986). In the present study, the SEM studies demonstrated that T. evansi produced several alterations in RBC structure including aggregation, doughnut-cell formation and keratocytosis. The mature RBCs were constantly observed to adhere firmly to trypanosomes in thin blood films. Other blood cells were not remarkably involved. This observation coincides with other findings of experiments done previously in deer mice experimentally infected with T. brucei where mature erythrocytes were observed to adhere to trypanosomes (Anosa & Kaneko, 1983b; Jenkins & Facer, 1985). After treatment with DIM for 4 and 8h, RBCs aggregation was reduced and the biconcave disk shape of RBCs creates a large and stable contact area between adjacent cells. It seemed that the infection with trypanosomes resulted in increased the susceptibility of red blood cell membrane to oxidative damage probably as a result of depletion of reduced glutathione on the surface of the red blood cell (Igbokwee et al., 1994; 1996; Taiwo et al., 2003 and Akanji et al., 2009).

In conclusion, the results of the present study demonstrated the in vivo effect of DIMA on T. evansi as evidenced by SEM. The administered drugs improved blood components, as indicated by RBCs condition, conceivably by deforming and destroying the parasites.

References

Scanning electron microscopy in the blood of mice Group I (control) uninfected and non-treated

Fig. (A): SEM surface view in red blood cells which normally appear. These are round, biconcave disc.

Scanning electron microscopy in the blood of mice Group II (control) infected and non-treated

Fig. (1 and 2): SEM surface view of T. evansi in blood of mice, showed, body is relatively long and cylindrical has a tapering anterior end and pointed posterior end. Length of free flagellum and undulating membrane.

Fig. (3): SEM surface view of T. evansi showed, the body is relatively long, the flagellum arises and extends forming undulating membrane which is thrown into folds.

Fig. (4): SEM view of groups T. evansi in a normal shape with free flagellum and undulating membrane.
Scanning electron microscopy in the blood of mice Group II (control) infected and non-treated

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. (5, 6, 7 & 8): SEM in the blood of inoculated mouse with *T. evansi* showed fusion of red blood cell and parasitophorus vacuolar membrane, disintegration rupture by cell and cell swelling should yeilded red blood cell ghosts.

Scanning electron microscopy in the blood of mice Group II (control) infected and non-treated

Fig. 9

Fig. 10

Fig. (9 & 10): SEM surface view showed RBC were constantly observed to adhere frimally to *T. evansi*. The RBC are keratocytosis and dough nut.