Applying Rough Set Theory on DNA Recombination
M. M. Elsharkasy∗, M. Sh. Badr∗∗and Wafaa M. Fouda∗∗∗

∗ Department of Mathematics, Faculty of Science, Tanta University.
∗∗ Department of Mathematics, Faculty of Science, Assuit University, New Valley.
∗∗∗ Faculty of Pharmacy, Tanta University.

Abstract: The generalized structure of DNA recombination is based on the rules of rough Set. In this paper we are discussing the relationship between rough Set and DNA recombination. We construct a new recombination operator using the properties of DNA and RNA. Using the process of cutting and sticking of a sequence of genes, new types of topological structures are constructed and some of their properties and characterization are investigated. We studied recombination operators in the statement” The restriction enzyme cuts both molecules at the same sequence ("Sticky" End)”.

Key words: Recombination, DNA, Topology, Rough Set, Sticky ends.

1. Introduction and Preliminaries

The biological application of topology to the study of DNA structure and understanding protein–DNA interactions that involve alterations of DNA topology is an essential aspect of the existence of every living cell because of the extraordinary degree to which the genomes of free-living organisms are confined. Moreover, changes in DNA topology accompany a wide range of enzyme-mediated processes on DNA such as replication, recombination, and repair [31].

DNA is often like a recipe or a code, since it contains the instructions needed to construct other components of cells, such as proteins and RNA molecules. The DNA segments that carry this genetic information are called genes. Within cells, DNA is organized into long structures called chromosomes [27].

DNA is a long polymer made from repeating units called nucleotides [3,17,29]. Although each individual repeating unit is very small, DNA polymers can be very large molecules containing millions of nucleotides [20].

Recombinant DNA are molecules constructed outside of living cells by joining natural or synthetic DNA segments to DNA molecules that can replicate in a living cell, or molecules that result from their replication. This technique involved in creating and purifying desired genes.

The process of recombination makes it possible to cut different strands of DNA, in with a restriction enzyme and join the DNA molecules together via complementary base pairing [4].

In this study paper, we consider some methods for generating topologies by using rough set theory via one of biological applications (DNA recombination processes) and getting new results, finally exploring the
extent of matching between mathematical and biological results.

1.2 DNA Recombination

The following is a summary of the process of making recombinant DNA (see Figure 1):

1. Treat the DNA taken from both sources with the same restriction end nuclease.
2. The restriction enzyme cuts both molecules at the same site, a sticky Ends for example (EcoRI) (GAATTC) and at blunt ends (Hpa I) for example(GAATTC).
3. The ends of the cut have an overhanging piece of single-stranded DNA called “sticky Ends.”
4. These sticky ends are able to base pair with any DNA molecule that contains the Complementary sticky end.
5. Complementary sticky ends can pair with each other when mixed.
6. DNA ligase is used to covalently link the two strands into a molecule of recombinant DNA.
7. In order to be useful, the recombinant DNA needs to be replicated many times (i.e. cloned). Cloning can be done in vitro, via the Polymerase Chain Reaction (PCR), or in Vivo (inside the cell) using unicellular prokaryotes (e.g. E. coli), unicellular eukaryotes (e.g. yeast), or mammalian tissue culture cells. Some examples of the therapeutic products made by recombinant DNA techniques include:
 a. Blood proteins: Erythropoietin; Factors VII, VIII, IX; Tissue plasminogen activator; Urokinase.
 b. Human Hormones: Epidermal growth factor; Follicle stimulating hormone; Insulin; Nerve growth factor; Relaxing; Somatotropin

Figure (1) A pictorial representation of the recombinant DNA process

A new mathematical representation is proposed for the configuration space structure induced by recombination which is called "P-structure". It consists of mapping of pairs of objects to power set of all objects in the search space. The mapping assigns to each pair of parental "genotypes" the set of all recombinant genotypes obtainable from the parental ones. P.F.stadler conclude spaces that the algebraic approach to fitness landscape analysis can be extended to recombination spaces and provides an effective way to analyze the relative hardness of a landscape for a given recombination operator.

1.3 The DNA Recombination Operator

Definition 1.3.1[7,8,9,11,12] Let X be any set which represents the set of *types* that it may be strings of bites, vectors, DNA, RNA sequence .etc. A definition of a recombination operator on X defined by.

\[T: X \times X \rightarrow P(X) \]

The recombination operator maps every pair of X to a subset of X (i.e. an element of the power set P(X)) such that \(\forall s, t \in X \), the following condition holds:

(i) \(T(s,t) = T(t,s) \)
(ii) \(T(s,s) = \{s\} \)
(iii) \(\{s,t\} \subseteq T(s,t) \)
(iv) \(\|T(s,t)\| \leq \|T(s,t)\| \) for \(\forall u \in T(s,t) \).

Definition 1.3.2[17]

Let X be a set of possible genotypes and A is a set of realized genotypes, a fixed collection of genetic operators such as mutation, recombination, gene-rearrangement and crossover, then k(A) is the genotypes accessible from A which satisfies the
1.4 Rough set theory

Rough set theory [38] is a recent approach for reasoning about data. It has achieved a large amount of applications in various real-life fields, like medicine, pharmacology, banking, market research, engineering, speech recognition, material science, information analysis, data analysis, data mining, control and linguistics (see the bibliography of [39]) and The main idea of rough sets corresponds to the lower and upper set approximations. These two approximations are exactly the interior and the closure of the set with respect to a certain topology \(\tau\) on a collection \(U\) of imprecise data acquired from any real-life field. The base of the topology \(\tau\) is formed by equivalence classes of an equivalence relation \(E\) defined on \(U\) using the available information about data. Following the connection between rough set concepts and topological notions, we investigate new definitions of the lower and upper approximation operators for similarity relation \(R\). The equivalence class may be replaced by an element of the base \(\{< p > R | p \in U\}\) of the topology \(\tau\). It generalizes Pawlak’s approach and other extensions \([10, 13, 30, 33, 34, 35, 36, 37]\). It can be also compared with other similarity-based generalizations of rough sets.

The notion of approximation spaces is one of the fundamental concepts in the theory of rough sets. This section presents a review of the Pawlak approximation space constructed from an equivalence relation and its generalization using any binary relations. Suppose \(U\) is a finite and nonempty set called the universe. Let \(E \subseteq U \times U\) be an equivalence relation on \(U\). The pair \((U, E)\) is called an approximation space \([38, 39]\). Let \(\{x\}_E\) denote the class of \(x\) such that \(\{x\}_E = \{y \in U : x E y\}\). Then the lower and upper approximation of a subset \(X\) of \(U\) are defined as

\[
E(X) = \{x \in U : \{x\}_E \subseteq X\}
\]

\[
\overline{E}(X) = \{x \in U : \{x\}_E \cap X \neq \emptyset\}
\]

A rough set is the pair \((E(X), \overline{E}(X))\). Obviously, we have \(E(X) \subseteq X \subseteq \overline{E}(X)\). The lower approximation of \(X\) contains the elements \(x\) such that all the elements that are indistinguishable from \(x\) are in \(X\). The upper approximation of \(X\) contains the elements \(x\) such that at least one element that is indistinguishable from \(x\) belongs to \(X\). This definition can be extended to any relation \(R\), leading to the notion of generalized approximate space \([32]\). Let \(xR\) be the right neighborhoods defined as \(xR = \{y \in U : xRy\}\).

The lower and upper approximations of \(X\) according to \(R\) are then defined as

\[
R(X) = \{x \in U : xR \subseteq X\}
\]

\[
\overline{R}(X) = \{x \in U : xR \cap X \neq \emptyset\}
\]

Obviously, if \(R\) is an equivalence relation, \(xR = [x]_R\) and these definitions are equivalent to the original Pawlak’s definitions. We list the properties that are of interest in the theory of rough sets.

\(L_1\). \(R(X) = [R(X^c)]^c\), where \(X^c\) denotes the complementation of \(X\) in \(U\).

\(L_2\). \(R(U) = U\).

\(L_3\). \(R(X \cap Y) = R(X) \cap R(Y)\).

\(L_4\). \(R(X \cup Y) = \overline{R}(X) \cup R(Y)\).

\(L_5\). \(X \subset Y \Rightarrow \overline{R}(X) \subset \overline{R}(Y)\).

\(L_6\). \(R(\emptyset) = \emptyset\).

\(L_7\). \(\overline{R}(X) \subset X\).

\(L_8\). \(X \subset \overline{R}(\overline{R}(X))\).

\(L_9\). \(\overline{R}(R(X)) \subset R(\overline{R}(X))\).

\(L_{10}\). \(\overline{R}(U) = U\).

\(L_{11}\). \(X \subset \overline{R}(X)\).

\(L_{12}\). \(\overline{R}(\overline{R}(X)) \subset X\).

\(L_{13}\). \(\overline{R}(R(X)) \subset R(\overline{R}(X))\).

\(L_{14}\). \(R(X^c \cup Y) \subset R(X^c) \cup R(Y)\).

\(L_{15}\). \(X \subset Y \Rightarrow \overline{R}(X) \subset \overline{R}(Y)\).

Definition 1.4.1 [2] Let \(R\) be any binary relation on \(U\), a set \(< p > R\) is the intersection of all right neighborhoods containing \(p\), i.e., \(< p > R = \bigcap_{xRy} xR\).

Definition 1.4.2 [1] Let \(R\) be any binary relation on \(U\), the lower and upper approximations of \(X\) according to \(R\) are then defined as

\[
R(X) = \{x \in U : xR \subseteq X\}
\]

\[
\overline{R}(X) = \{x \in U : xR \cap X \neq \emptyset\}
\]

Proposition 1.4.1 [1] For any binary relation \(R\) on a nonempty set \(U\) the following conditions hold for every \(X \subseteq U\).

(i). \(R(X) = [R(X^c)]^c\).

(ii). \(\overline{R}(U) = U\).

(iii). \(R(X \cap Y) = R(X) \cap R(Y)\).

(iv). \(X \subset Y \Rightarrow R(X) \subset R(Y)\).
Applying Rough Set Theory on DNA Recombination

Let X is a non-empty set and a closure operator $C^I : P(X) \rightarrow P(X)$ such that:

- $K_0 : \text{CL} (\emptyset) = \emptyset$
- $K_1 : \text{If } A \subseteq B \Rightarrow \text{CL}(A) \subseteq \text{CL}(B)$ (Isotonic)
- $K_2 : A \subseteq \text{CL}(A)$ (Expanding)
- $K_3 : \text{CL}(A \cup B) = \text{CL}(A) \cup \text{CL}(B)$ (Sub-additive)
- $K_4 : \text{CL} (\text{CL}(A)) = \text{CL}(A)$ (Idempotent)
- $K_5 : \bigcup_{i \in I} \text{CL}(A_i) = \text{CL} \left(\bigcup_{i \in I} (A_i) \right)$ (additive)

1.5 Generalized DNA Recombination Topological Space [19]

We aimed in this work is to use the topological concepts in constructing flexible mathematical models in the field of biomatics. We constructed two new recombination operators using the properties of DNA and RNA. We study topological properties of the constructed operators and the associated topological spaces of DNA and RNA. Several examples are discussed to illustrate the new concepts. *Cut and Sticks* for sequence of genotypes new types of topological structures are constructed and some of their properties and characterization are investigated.

The definition of process recombination mathematically using a matrix can be cut and the integration of two types. We have been made a definition of the process of recombination with two ways: first, we take the first sequence needed only and ignore the rest. The other way we take all parts and as a result of improved optimization of this trace reappeared in the form of the space and that he began the installation process is described in a more accurate.

Well the way recombination between genes and we have greater accuracy and better place, and how cutting separation from the rest of the injured part.

Definition 1.5.1 General Topological DNA Recombination Operator [19]

Let X set of “types”, which may be strings of bits, vectors, DNA or RNA sequences etc. And span of X contains all the linear combination elements of a X the outputs as well as recombination.

We define the recombination function

$R_s : X \times X \rightarrow \text{span } \{X\}$

Such that

$R_s(x, y) = \bigcup_{i=1}^n \left\{ c_i^1 x_1^i + c_i^2 x_2^i, c_{n-1}^1 y_1 + c_{n-1}^2 y_2 \right\}$

Where the matrix represent the unity of level $i \times n$, O a zero matrix, c_i^1 is called Matrix Hacking and $c_i^1 \in M_n(f)$ [Boolean matrix], for all $i \in \{2, 4, 6, 8\}$.

We will run the new Topological study on DNA recombination where recombination between types x, y since x first gene and y plasmid is the same between the x, y, this is called general topological recombination operator.

Proposition 1.5.1 [19]

Let recombination operator

$R_s : X \times X \rightarrow \text{span } \{X\}$ Be an operator,

$R_s(x, y) = \bigcup_{i=1}^n \left\{ c_i^1 x_1^i + c_i^2 x_2^i, c_{n-1}^1 y_1 + c_{n-1}^2 y_2 \right\}$

$R_s(x, y)$ Consists of all recombination products can be done or (offspring) can be obtained induced by x, y and satisfied:

(i) $x, y \in R_s(x, y)$: That is recombination between “types”, x and y forms a recombination set $R_s(x, y)$

(ii) $R_s(x, y) = R_s(y, x)$

(iii) $\forall x, y \in R_s(x, y) \Rightarrow [R_s(x, z) \subseteq R_s(x, y)] \forall x, y, z \in B$

(iv) $R_s(x, x) = 2x$ (Duplication of genes)

(v) $R_s(x, y) \subseteq \text{span } \{x, y\}$, [with change the enzymes], where span

$A = \{ z \in B : \forall z \in A: \exists x \in A: z_i = x_i \}$ is the linear span.

A related study on the structure of the genotype spaces that is introduced by so-called unequal crossover
(or no homologous recombination) show that isotonic spaces are adequate for mutation spaces but behave somewhat ‘un nature’ for certain recombination spaces[19].

In this section, we present a definition of closure recombination space by using recombination function

Definition 1.5.2 closure recombination operator[19]

Let a subset A of X. We take $T_{R_s}^*(A)$ represents the closure operator since

$$T_{R_s}^*(A) = \cup_{x,y} R_s(x,y) \text{ s.t. } A \subseteq X.$$ We work in standard topological recombination operator. The resultant closure-space from the recombination operator $R(x, y)$ is denoted by $(X, T_{R_s}^*)$.

Theorem 1.5.1[19]

The closure space $(c(n), T_{R_s}^*(A))$ arising from recombination function satisfies

(i) $T_{R_s}^*(\emptyset) = \emptyset$

(ii) If A is a set of genes, then $A \subseteq T_{R_s}^*(A)$.

(iii) If $A \subseteq B \rightarrow T_{R_s}^*(A) \subseteq T_{R_s}^*(B)$

(iv) $T_{R_s}^*(A \cap B) \subseteq T_{R_s}^*(A) \cap T_{R_s}^*(B)$

Resulting in a space $(X, T_{R_s}^*)$, who will we call R_s DNA recombination achieve some topological properties which are useful for process a recombination of DNA. In the table a space is constructed Neighborhood space.

<table>
<thead>
<tr>
<th>A</th>
<th>$R_+(A)$</th>
<th>$R_-(A)$</th>
<th>$R_+(R_-(A))$</th>
<th>$R_-(R_+(A))$</th>
<th>A^c</th>
<th>$R_+(A^c)$</th>
<th>$[R_+(A^c)]^c$</th>
<th>$R_-(A^c)$</th>
<th>$[R_-(A^c)]^c$</th>
<th>$R_+(R_-(A))$</th>
<th>$R_-(R_+(A))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{P}</td>
<td>{E}</td>
<td>∅</td>
<td>∅</td>
<td>{G,E}</td>
<td>{G,E}</td>
<td>{G,P}</td>
<td>{E}</td>
<td>∅</td>
<td>{G,P}</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>{E}</td>
<td>{G,E}</td>
<td>∅</td>
<td>∅</td>
<td>{G,E}</td>
<td>{G,E}</td>
<td>{G,P}</td>
<td>{E}</td>
<td>{G,P}</td>
<td>{P}</td>
<td>{G,E}</td>
<td>{P}</td>
</tr>
<tr>
<td>{G,P}</td>
<td>{E}</td>
<td>{P}</td>
<td>{E}</td>
<td>{G,E}</td>
<td>{G,E}</td>
<td>{G,P}</td>
<td>{E}</td>
<td>{G,P}</td>
<td>∅</td>
<td>{G,E}</td>
<td>{P}</td>
</tr>
<tr>
<td>{G,E}</td>
<td>U</td>
<td>{G,P}</td>
<td>{E}</td>
<td>U</td>
<td>{G,P}</td>
<td>{P}</td>
<td>{E}</td>
<td>{G,P}</td>
<td>{G,P}</td>
<td>{E}</td>
<td>{G,P}</td>
</tr>
<tr>
<td>{P,E}</td>
<td>{G,E}</td>
<td>{G,P}</td>
<td>{E}</td>
<td>U</td>
<td>{G,E}</td>
<td>{E}</td>
<td>{G,P}</td>
<td>{E}</td>
<td>{G,P}</td>
<td>{G,P}</td>
<td>{P}</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>{G,P}</td>
<td>{E}</td>
<td>U</td>
<td>∅</td>
<td>U</td>
<td>{E}</td>
<td>{G,P}</td>
<td>{G,P}</td>
<td>{E}</td>
<td>{G,P}</td>
</tr>
<tr>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>U</td>
<td>{G,P}</td>
<td>{E}</td>
<td>U</td>
<td>{G,P}</td>
<td>{E}</td>
<td>∅</td>
</tr>
</tbody>
</table>

(Table, No 1)

2. **Upper and Lower Approximation on DNA Recombination**

Following the connection between rough set concepts and DNA recombination, we investigate new definitions of the class of element depend on definitions of recombination set which resulting from the definition of recombination function which identifier as follows

$R_s : X \times X \rightarrow \text{span} \{X\}$

Such that

$R_s(x, y) = \bigcup_{i=1}^{n} \{x_i^{k_i} + x_i^{l_i}, c_n y_1 + c_{n-1} y_2\}$.

Definition Let $R_s(x, y)$ be the recombination set consists of all recombination products can be done (or no homologous recombination) show that isotonic spaces are adequate for mutation spaces but behave somewhat ‘un nature’ for certain recombination spaces are adequate for mutation spaces but behave somewhat ‘un nature’ for certain recombination spaces.

Definition Let $R_s(x, y)$ be a recombination set. Then the recombination class of x can be defined as $[x]_{R_s} = \{y \in U : y \in R(x, y)\}$.

Then the lower and upper approximation of a subset X of U are defined as

$R_s(X) = \{x \in U : [x]_{R_s} \subseteq X\}$

$\overline{R_s}(X) = \{x \in U : [x]_{R_s} \cap X \neq \emptyset\}$.

Example 1 Let the recombination process consists of three key pillars are: genes, plasmids and enzymes i.e. $U = \{g, e, p\}$, the recombination class of gene $[G]_R = \{E\}$, $[P]_R = \{E, G\}$ and $[E]_R = \{0\}$ (see , Table , No 1)
Proposition 2.1 For any recombination class \([x]_R\) on nonempty set \(U\) the following conditions hold for every \(X, Y \subseteq U\).

1. \(R(U) = U, R(\emptyset) = \emptyset, R(\emptyset) = \emptyset\), \(R(U) \subseteq U\).
2. \(R(X \cap Y) = R(X) \cap R(Y)\).
3. \(X \cap Y = R(X) \cap R(Y)\), \(R^-(X) \cap R^-(Y)\).
4. \(R(X) \cap [R(X^c)]^c\).
5. \(R(R(X)) \cap R(X))\).
6. \(R(X) \cap [R(X^c)]^c\).
7. \(R(R(X)) \cap R(X))\).

Proof. (i) Since for every \(x \in U\), \([x]_R \subseteq U\) hence, \(x \in R(U)\). Then \(U \subseteq R(U)\). Also since \(R(U) = U\), there is no \(x \in U\) such that \([x]_R \subseteq \emptyset\) hence \(R(\emptyset) = \emptyset\).

(ii) \(R(X \cap Y) = \{x \in U : [x]_R \subseteq X \cap Y\}\)

\[= \{x \in U : [x]_R \subseteq X \land [x]_R \subseteq Y\}\]

\[= \{x \in U : [x]_R \subseteq X\} \cap \{x \in U : [x]_R \subseteq Y\}\]

\[= R(X) \cap R(Y)\).

(iii) Let \(X \subseteq Y\) and \(x \in R(X)\), then \([x]_R \subseteq X\) and so \([x]_R \subseteq Y\), hence \(x \in R(Y)\). Thus \(R(X) \subseteq R(Y)\).

(iv) Since \(X \subseteq U \cup Y\) then \(R(X) \subseteq R(U)\) also, \(Y \subseteq C \cup Y\) then

\[R(Y) \subseteq R(X \cup Y), hence R(X \cup Y) \supseteq R(X) \cup R(Y)\).

(v) \([R^-(X^c)]^c = \{x \in U : [x]_R \cap X^c \neq \emptyset\}\]

\[= \{x \in U : [x]_R \cap X^c = \emptyset\} \cup \{x \in U : [x]_R \subseteq X\} \cup R(X)\).

(vi), (vii), (viii), (ix) and (x) The proof is the same as previous.

The set of all open recombination sets = \{\(U, \emptyset\)\} consist of a space called indiscrete recombination space satisfies the following:

Proposition 2.2.let \((U, E)\) be an indiscrete recombination space, \(A \subseteq U\) then the limit point of \(A\)

\[A' = \begin{cases} \emptyset \cup \{p\}, & \text{if } A = \emptyset \\ U, & \text{if } A \text{ contains more then one element} \end{cases}\]

Proof: Obviously

These results means:

1. That there are always an end point of the process,

2. There are an output of the process of recombination and this applicable with the biological concept.

Remark 2.1. Every subset of an indiscrete recombination space is dense.

The sense that it produces a very large number of plasma carrying the gene

The aim of the followingPreposition is described can be separated any item in the recombination process.

Preposition 2.3. Every indiscrete recombination space is regular space

Note: Since we use in recombination process \{gene, plasmids, enzymes\} i.e.

1. Gene + Enzyme = \(G-h\) since \(h\) The lump of gene.

2. Plasmid + Enzyme = \(P-h\).

3. \(1+2=P+G\).

Example 2.2. If the use of plasmid as an aid since \(U = \{g, e, p\}\), hence the class of \([G]_R = \{P\}\), \([P]_R = \{\emptyset\}\) and \([E]_R = \{G, P\}\),

\[R_s(X) = \{x \in U : [x]_R \subseteq X\}\]
\[
\overline{R_s}(X) = \{x \in U: [x]_{R_s} \cap X \neq \emptyset\}. \text{ (see , Table , No 2)}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>(R_-(A))</th>
<th>(R^-(A))</th>
<th>(R_-(A^*))</th>
<th>(A^*)</th>
<th>(R^-(A^*))</th>
<th>(R^-(A^*)^c)</th>
<th>(R_-(A^*))</th>
<th>(R^-(A^*)^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{G}</td>
<td>{G,P}</td>
<td>{G,P}</td>
<td>{G,P}</td>
<td>{P,E}</td>
<td>{G,E}</td>
<td>{G,E}</td>
<td>{G,P}</td>
<td>{E}</td>
</tr>
<tr>
<td>{P}</td>
<td>{G,P}</td>
<td>{G,E}</td>
<td>{P}</td>
<td>{E}</td>
<td>{G,E}</td>
<td>{P}</td>
<td>{G,P}</td>
<td>{E}</td>
</tr>
<tr>
<td>{E}</td>
<td>{P}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{G,P}</td>
<td>{G,P}</td>
<td>{P}</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{G,P}</td>
<td>U</td>
<td>U</td>
<td>{P}</td>
<td>{E}</td>
<td>{G,E}</td>
<td>{P}</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{G,E}</td>
<td>{P}</td>
<td>{G,P}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{E}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{P,E}</td>
<td>{G,P}</td>
<td>{G,P}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{G,P}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

(Table , No 2)

The set of all open recombination sets = \{U, \emptyset, \} consist of a space called indiscrete recombination space

Proposition 2.4. For any \((U,R)\) be an indiscrete recombination space a nonempty set \(U\) the following conditions hold for every \(X, Y \subseteq U\).

(i) \(R(U) = U, R(\emptyset) = \emptyset, R(\emptyset) \subseteq U\)
(ii) \(R(X \cap Y) = R(X) \cap R(Y)\).
(iii) \(X \subseteq Y \Rightarrow R(X) \subseteq R(Y)\).
(iv) \(R(X \cup Y) = R(X) \cup R(Y)\).
(vi) \(R(\emptyset) = [R(\emptyset)]^c\).
(vii) \(R(\emptyset) = [R(\emptyset)]^c\).
(viii) \(R(\emptyset) = [R(\emptyset)]^c\).
(ix) \(R(X) \subseteq [R(X^c)]^c\)
(x) \(R(X^c) \subseteq [R(X)]^c\)

Proof. The proof is the same as for proposition 2.1

\[
\overline{R_s}(X) =X \cap \{x \in U: [x]_{R_s} \cap X \neq \emptyset\}
\]

\[
\overline{R_s}(X) =X \cup \{x \in U: [x]_{R_s} \cap X \neq \emptyset\}
\]

The set of all open \{U, \emptyset, \} \{G, \} \{G,P\} \}

3. Rough Set Theory for DNA recombination

In the following part we use the lower and upper approximation as:

\[
\overline{R_s}(X) =X \cap \{x \in U: [x]_{R_s} \cap X \neq \emptyset\}
\]

\[
\overline{R_s}(X) =X \cup \{x \in U: [x]_{R_s} \cap X \neq \emptyset\}
\]

The recombination process consists of three key pillars are: genes, plasmids and enzymes i.e.\(U = \{g , e, p\}\, \text{the recombination class of gene \([G]_R = \{E\}, [P]_R = \{E,G\}\ \text{and}[E]_R = \{\emptyset\}\) (see, Table , No 3)

<table>
<thead>
<tr>
<th>A</th>
<th>(R_-(A))</th>
<th>(R^-(A))</th>
<th>(R_-(A^*))</th>
<th>(A^*)</th>
<th>(R^-(A^*))</th>
<th>(R^-(A^*)^c)</th>
<th>(R_-(A^*))</th>
<th>(R^-(A^*)^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{G}</td>
<td>\emptyset</td>
<td>{G,P}</td>
<td>\emptyset</td>
<td>{P,E}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{G,E}</td>
<td>{G,P}</td>
</tr>
<tr>
<td>{P}</td>
<td>{E}</td>
<td>{P}</td>
<td>\emptyset</td>
<td>{G,E}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{E}</td>
<td>{P}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{G,P}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{G,P}</td>
<td>U</td>
<td>U</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{G,E}</td>
<td>U</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{P}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>{P,E}</td>
<td>U</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{G}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>U</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

(Table , No 3)
Proposition 3.1. For any \([x]_{R_1}\) is a recombination class on nonempty set \(U\) the following conditions hold for every \(X, Y \subset U\).

1. \(R(X \cap Y) = R(X) \cap R(Y)\).
2. \(R(X \cup Y) \supset R(X) \cup R(Y)\).
3. \(X \subset Y \Rightarrow R(X) \subset R(Y)\).
4. \(R(\emptyset) = \emptyset\).
5. \(R(X) \subset X\).

U1. \(R(X) = [R(X^c)]^c\).
U2. \(R(\emptyset) = \emptyset\).
U3. \(R(X \cup Y) = R(X) \cup R(Y)\).
U4. \(R(X \cap Y) \subset R(X) \cap R(Y)\).
U5. \(X \subset Y \Rightarrow R(X) \subset R(Y)\).
U6. \(R(U) = U\).
U7. \(X \subset R(X)\).
U8. \(\overline{R}(X) = \overline{R}(X)\).
LU. \(R(X) \subset R(X)\).

Proof. The proof is the same as for proposition 2.1.

4. General Rough Set theory for DNA recombination

The recombination process consists of three key pillars: genes, plasmids and enzymes. In this way we infer mathematical relationships between the components of the process of recombination the process and the formation of the class of elements by \(xR = [x]R = \{y \in U: xe y\}\).

Example 4.1. Let \(U = \{G,E,P\}\) and \(R = \{(G,G), (E,E), (P,P), (E,G), (E,P), (G,P)\}\). Then:

\[
\begin{align*}
\emptyset R &= \{G,P\} \\
\{G\} R &= \{G\} \\
\{P\} R &= \{G,P\} \\
\{E\} R &= \{E\} \\
\{G,P\} R &= \{G,P\} \\
\{G,E\} R &= \{E\} \\
\{P,E\} R &= \{P,E\} \\
U R &= U \\
\end{align*}
\]

The set of all open recombination sets = \(\{U, \emptyset, \{E\}, \{P,E\}\}\), The set of all closed recombination sets = \(\{U, \emptyset, \{G\}, \{G,P\}\}\).

Example 4.2. In this way we infer mathematical relationships between the components of the process of recombination the process, change with working steps and the formation of the class of elements by \(xR = [x]R = \{y \in U: xe y\}\), since set \(U = \{G,E,P\}\).

\[
\begin{align*}
\emptyset R &= \{G,P\} \\
\{G\} R &= \{P\} \\
\{P\} R &= \{U\} \\
\end{align*}
\]

(Table, No 4)
Applying Rough Set Theory on DNA Recombination

<table>
<thead>
<tr>
<th>A</th>
<th>$R^{-}(A)$</th>
<th>$R_{-}(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{G}</td>
<td>{G,E}</td>
<td>∅</td>
</tr>
<tr>
<td>{P}</td>
<td>U</td>
<td>{P}</td>
</tr>
<tr>
<td>{E}</td>
<td>{E}</td>
<td>∅</td>
</tr>
<tr>
<td>{G,P}</td>
<td>U</td>
<td>{G,P}</td>
</tr>
<tr>
<td>{G,E}</td>
<td>{G,E}</td>
<td>∅</td>
</tr>
<tr>
<td>{P,E}</td>
<td>U</td>
<td>{P}</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>

The set of all open recombination sets =
{U, ∅, {P},{G,P}} is T_0 space

The set of all closed recombination sets =
{U, ∅, {E},{G,E}}

Example 4.3. In this way we infer mathematical relationships between the components of the process of recombination the process change with working steps and the formation of the class of elements by $[x]R$ = $R_{g} = \{x : xR_{g}\}$ since set $U = \{G, E, P\}$

$R = \{(G,G), (E,E), (P,P), (E,G), (E,P), (G,P)\}$

$R_{g} = \{G,E\}$

$R_{p} = \{U\}$

Re = \{E\}

<table>
<thead>
<tr>
<th>A</th>
<th>$R^{-}(A)$</th>
<th>$R_{-}(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{G}</td>
<td>{G,P}</td>
<td>∅</td>
</tr>
<tr>
<td>{P}</td>
<td>{P}</td>
<td>∅</td>
</tr>
<tr>
<td>{E}</td>
<td>U</td>
<td>{E}</td>
</tr>
<tr>
<td>{G,P}</td>
<td>{G,P}</td>
<td>∅</td>
</tr>
<tr>
<td>{G,E}</td>
<td>U</td>
<td>{G,E}</td>
</tr>
<tr>
<td>{P,E}</td>
<td>U</td>
<td>{E}</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>∅</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>

We can conclude that results of both example (4.2) and (4.3) are equivalent to that example (4.1). Where sets of all open recombination sets in this group only two item of the three appear.

Conclusions

And the process of recombination is appear in the industrialization pharmaceutical and gene therapy, and we are working on a plan (draft) for a work program to help the biologists, the program consists of three phases (operations). The first process is the recombination, the second is determine mutation and third process of reform or Simulation, on the occasion the finished of the recombination process, this article talks about the process characterization and conformity mathematical results of biological results. Some of the suggestions to use rough set in future work.

References:

Applying Rough Set Theory on DNA Recombination

ملخص العربي

الشكل المعمم لعملية إعادة التركيب (إعادة تركيب الحمض النووي ناقص الأوكسجين "DNA recombination") تعتبر نواة لدراسة المجموعات الاستقرائية (rough set) في هذه البحث نناقش العلاقة بين المجموعة الاستقرائية وعملية إعادة التركيب . واستخدام المجموعة الاستقرائية في التأكد من صحة داله عملية إعادة التركيب (بيولوجيا). وباستخدام مفهوم عملية التركيب والمجموعة الاستقرائية أمكن ايجاد خواص رياضية جديدة وطابعية للمعنى البيولوجي لعملية إعادة التركيب.