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Abstract: A tumor-immune model of Kirschner type is considered. The boundedness of solutions are discussed. Criteria 
for existence and the stability of equiliria are established. Using similar technique to that we used before in the literature, 
we study the existence of Hopf-Andronov-Poincaré bifurcation. Using Liapunov function sufficient conditions are 
guaranteed the existence of a unique periodic  asymptotically stable solution for the system are established. Numerical 
simulations are given to illustrate the results.                                                                                            
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1-Introduction: 

   Cancer still considered as one of major causes of death 
world wide. Cancer starts when unbounded growth of 
normal cells in the body happens fast. It can also occur 
when cells lose their ability to die. There are many 
known causes of cancers that have been documented to 
date including exposure to chemicals, drinking excess 
alcohol, excessive sunlight exposure, and genetic 
differences [10]. The most common cause of cancer-
related death is lung cancer. However, the cause of many 
cancers still remains unknown.  The kind of cancers 
differs from country to another for example, in Japan, 
there are many cases of stomach cancer, but this is not 
the case in other countries (see [12]). In 1920's Lotka 
and Volterra introduced  the idea of  using the qualitative 
theory of ordinary differential equations in mathematical 
biology, population models, and tumor-immune 
dynamics ( for a good summry of this subject see [1], 
and [9]). In 1998 Kirschner and Panetta [7] improved the 
above works and introduced a 3-dimentinal model. They 
discussed stability analysis and bifurcation theory to  
classify behavior of equiliriaof the system. In 2009 

Kirschner et al [8] established sufficient conditions that 
guarantee asymptotic convergence of concentrations of 
tumor cells using  quasi-Liapunov functions technique. 
In 2012, Tsygvintsev et al [13], derived sufficient 
conditions for the global stability of the cancer-free 
equilibrium point.   

In this paper we discuss Kirschner and Panetta model, 
analytically and numerically in a fashion like the work 
of El-Owaidy and El-Sheikh [5] , El-Sheikh and 
Mahrouf [2] and [3], Zaghrout and El-Sheikh [17] and 
El-Sheikh et al [4].The model in this paper can be 
summarized briefly as follows, tumor cells are tracked as 
a continuous variable as they are large and generally 
homogeneous; they are defined as y(t). Immune cells are 
those cells that have been stimulated and are ready to 
respond to the foreign matter (known as effector cells); 
they are defined as x(t) and assumed also to be large in 
number. Finally, effector molecules are represented by 
z(t).These are self-stimulating proteins for effector cells 
which produce them. The equations that describe the 
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interactions of these state variables are given by the 
following mathematical system  (see[7]):  
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In equation (1a), the first term represents stimulation by 
the tumor to generate effector immune cells. The 
parameter c is known as the antigenicity or strength of 
this characteristic. The second term in (1a) represents 
natural death and the third is the proliferative 

enhancement effect of IL-2. s₁ represents a treatment 

term where by a physician  administers effector cells that 
have been taken from a patient, stimulated to a large 
degree, and then subsequently infused back into the 
patient. In equation (1b), the first term is a logistic 
growth term for tumor growth, and the second is a 

clearance term by the effector cells. In equation (1c), 

IL-2 is produced by effector cells (in a Michaelis-
Menton fashion, i.e. dose response) and decays via a 

known half-life (third term). The second term, s₂ is a 

treatment term that represents administration of IL-2 
(manufactured) by a physician to a patient, to again 
stimulate effector cell growth and proliferation. To help 
with interpretation of the mathematical results, we 
present a table of parameters for ease of parameter 
interpretation: 

c (antigenicity) 
P1 (proliferation rate of immune cells) 
r2 (cancer growth rate) 
μ3 (half-life of effector molecule) 
g1 (half sat. for proliferation term) 
µ2  (death rate of immune cells) 
g2 (half-sat. for cancer clearance) 
b (logistic growth of cancer capacity) 
p2 (production rate of effector molecule) 
α (cancer clearance term) 
t (time) 

                         Table 1.Parameter Values. 

     In the present paper we consider the case of 

immunotherapy with ACI and IL-Z (i.e. s₁> 0, s₂> 0). 

Our main aim is to discuss analytically the existence, 
stability, and bifurcation of the steady states and to 
improve some known results obtained for the Kirschner 
Panetta system (1). The paper is organized as follows, in 
Section 2, we discuss the dissipativeness and the 
existence of equiliria of  the system . In Section 3, we 
study the stability in the neighborhood of each critical 
points. In Section 4 we give sufficient conditions for the 

permanence. In section 5 we establish sufficient 
conditions for existence of a unique asymptotically 
periodic solution using liapunov function. Our technique 
used in Sections 4 and 5 depends on those of [15]. 
Finally, in Section 6, we give numerical simulations to 
illustrate our theoretical results. 

2-Existence and Dissipativeness 

     It is clear that the components of the right 
hand side  of the system (1) have  continuous partial  

on the space  sderivative
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herefore, the solution of the system (1) with non-negative 
initial conditions, exists and is unique. 
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3- Local Stability and Hopf bifurcation 
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 unstable otherwise ( This is consistent with [7]). 

    Now choosing c as a bifurcation parameter for  the 

system (1). Let cc be the value of c at which the 

characteristic equation on the neighborhood of iE , has 

two pure imaginary roots 2,1 . 

In the following result, we deduce sufficient conditions 
that guarantee the occurrence of Hopf bifurcation. 
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4-Permanence 

We first give the following preliminaries. 
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Thus the system (1)  is permanent. 

5-Existence and Uniqueness of Asymptotically 
Periodic Solution 

    Following [15] we consider the asymptotically 
periodic system as follows, 

(14)                             ),(                        txtf
dt

dx
   

where )],0,([ nRrCf  and for any Cxt  . Define 

 ]0[),()( .-r,θtxxi    For any  

4, sec from ,x  define  we),...,(
1

21 



n

i
inn xRxxxx  it 

is easy to see that there exists 0H , such that 

.HnMx i  For any ,C  define .)(sup
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
 


r

 

Let }.,{ and },,{ HxRxSHCC n
HH    

In this section we use the same technique [15]  to discuss 
the  existence and uniqueness of asymptotically periodic 
solution of system (14), we consider the adjoint system 

(15)                                      ),(                       

),(                        

t

t

ytf
dt

dy

xtf
dt

dx





 
The following lemma is needed 

Lemma 2  (Yuan [15,16])   Let ),(   RSSRV HH
 

satisfy   

),(),,()( )( yxbyxtVyxai   where )(ra  and 

)(rb  are are continuously positively increasing 

functions; 

),(),,()( )( 21212211 yyxxlyxtV,yt,xVii   

where l  is a constant and satisfies ;0l  

)(iii  there exists continuous non-increasing function 

)(sP , such that for ,)(,0 ssPs  and as  

],0,[)),(),(,(())0(),0(,(( rtVtVP    

it follows that )),0(),0(,())0(),0(,()16(  tVtV   
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where   is a constant and satisfies .0  Furthermore, 
the system (15) has a solution )(t  for tt  and 

satisfies .)( Ht  Then system (14) has a unique 

asymptotically periodic solution, which is uniformly 
asymptotically stable. 
Theorem 4  Let by  defined  are  and ,, 321   
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(19)                                                   }.,,min{ 321  
 respectively. In addition to the conditions )( 1H  and 

),( 2H   we assume further that ,0  then there exists a 

unique asymptotically periodic solution of system (1) 
which is uniformly asymptotically stable. 

Proof. By Theorem, we know that the solution of the 
system (1) is ultimately bounded. Consider the adjoint 
system of the system (1) as follows 
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Using Lemma 2, we get 
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where )(ti lies between )(txi  and )(tui  then, we have 
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 Substituting from (25) into (23), we get 
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This can be written as 
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where 21 , , and 3  are defined in (16)-(18).   

Consider   as defined in (19). It follows  

(26)                             ).()(                  tVtVD 

 Then (iii) of Lemma 2 is fulfilled. Therefore the system 
(1) has a unique positive asymptotically periodic 
solution in the domain  , which is uniformly 
asymptotically stable. This completes the proof. 
6- Numerical Results  
   In this section, we perform numerical simulations with 
the help of parameter values taken from experimental 
data from published literature. Using Fourth order 
Runge-Kutta method through out matlab programme. 
For this purpose we consider the following parameter 
values 

 stable a is (1) system  that theFig.2.clear It   .1000z
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             (2-a) The time response of effector cells 

 
           (2-b) The time response of tumor cells 

 
                (2-c) The time response of IL-2 

 
              (2-d) Spiral focus of system (1) 
Fig.2.The dynamical behavior and the projection of the                           
solution of the system (1). 
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Moreover, Fig.3 Shows that the system (1) has a unique 
positive periodic solution which is globally 
asymptotically stable. 
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           (3-a) The time response of effector cell 

 
           (3-b) The time response of tumor cells                             

 
                (3-c) The time response of IL-2 

 
                (3-d) Limit cyclic of the system (1)                                    
Fig.3.The dynamical behavior and the projection of the 
solution of the system (1). 
Fig.4. represents the chaotic attractor of system (1) at the 
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          (4-a) The time response of effector cells                            

 
            (4-b) The time response of tumor cells                              

 
                 (4-c) The time response of IL-2                                         

 
            (4-d) Chaotic attractor of the system (1)  
Fig.4. The dynamical behavior and the projection of the  
solution of the system (1)  
                            
7-Conclusions 

    In this paper, we discuss a tumor-immune dynamical 
Kirschner model . We improve some results in literature. 
We focus on the case of  immunotherapy with ACI and 
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IL-Z. We established the local asymptotic stability of the 
tumor-free equilibrium point 1E . Our results are 

consistent with those obtained by Denise Kirschner et al. 
[7]. We prove the existence of Hopf-Andronov-Poincaré 
bifurcation using the technique of Pimbley [11], El-
Sheikh.[2],and [3]. Also, we used a technique similar to 
that used by Changjin Xu, and Qiing Zhang [15] to 
obtain sufficient conditions for the permanence of the 
system. By constructing a suitable Liapunov function, 
we give sufficient conditions guarantee the system has a 
unique asymptotically periodic solution which is 
globally asymptotically stable, see Fig.3.  
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 للأورام  رحول ديناميكيه نموذج كيرشنا
.د عفاف ذغروتأ  

الأزهر جامعة - بنات  كلية العلوم - رياضياتقسم ال  

 أ.د محمد الشيخ

يةالمنوف جامعة -  كلية العلوم - رياضياتقسم ال  

 أ.د أحمد النموري

جامعة طنطا - كليه العلوم - قسم الرياضيات  

 أسماء العشري

جامعة طنطا   - كلية العلوم  - قسم الرياضيات   

 

لازال السرطان يعتبر إحدى أسباب الوفاة بين البشر.ومن أسبابه  المعروفة هو النمو السريع غير المحدود للخلايا أو عندما 

فناء وهناك أسباب أخري للسرطان مثل التعرض للكيماويات أو الإفراط في تناول الكحوليات أو تفقد الخلايا قدرتها علي ال

التعرض الزائد لضوء الشمس أو اختلاف الجينات كما أن من أشهر السرطانات المؤدية للوفاة سرطان الرئة ألا أن سبب 

  سرطان قد يختلف من منطقه لآخري.كثير من السرطانات  غير معلوم حتى الآن ومن الجدير بالذكر ان نوع ال

 و Kirschner قام  1998بعمل نموذج رياضي يصف العملية السكانية وفي  Volterra و   Lotka قام كل من    1920في 

Panetta  بتطبيق ذلك في تطوير النماذج  المعرفة لنموذج السرطان وقد قاما بدراسة سلوك الاستقرار والتشعب لنقط الاتزان

  لخلو من المرض وتبع هذا البحث الكثير من الانجازات في دراسة خواص النموذج عدديا وتحليايا في حاله ا

بطريقة مشابهة لنتائجنا في مساهماتنا السابقة في مجال الرياضيات  Kirschner في هذا البحث ندرس تحليليا نموذج 

الحيوية حيث ندرس في هذا البحث بعض الخواص الوصفيه لنقاط الاتزان مثل المحدودية والوجود والاستقرار والتشعب 

وضيح النتائج التي وحصلنا علي شروط كافيه لوجود حل دوري مستقر واحد وقد منا بعض التطبيقات والأمثلة العددية  لت

  حصلنا عليها . 

  


