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Abstract: A tumor-immune model of Kirschner type is considered. The boundedness of solutions are discussed. Criteria
for existence and the stability of equiliria are established. Using similar technique to that we used before in the literature,
we study the existence of Hopf-Andronov-Poincaré bifurcation. Using Liapunov function sufficient conditions are
guaranteed the existence of a unique periodic asymptotically stable solution for the system are established. Numerical

simulations are given to illustrate the results.
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1-Introduction:

Cancer still considered as one of major causes of death
world wide. Cancer starts when unbounded growth of
normal cells in the body happens fast. It can also occur
when cells lose their ability to die. There are many
known causes of cancers that have been documented to
date including exposure to chemicals, drinking excess
alcohol, sunlight exposure, and genetic
differences [10]. The most common cause of cancer-
related death is lung cancer. However, the cause of many
cancers still remains unknown. The kind of cancers

excessive

differs from country to another for example, in Japan,
there are many cases of stomach cancer, but this is not
the case in other countries (see [12]). In 1920's Lotka
and Volterra introduced the idea of using the qualitative
theory of ordinary differential equations in mathematical
biology, population models, and
dynamics ( for a good summry of this subject see [1],
and [9]). In 1998 Kirschner and Panetta [7] improved the
above works and introduced a 3-dimentinal model. They
discussed stability analysis and bifurcation theory to
classify behavior of equiliriaof the system. In 2009

tumor-immune

Kirschner et al [8] established sufficient conditions that
guarantee asymptotic convergence of concentrations of
tumor cells using quasi-Liapunov functions technique.
In 2012, Tsygvintsev et al [13], derived sufficient
conditions for the global stability of the cancer-free
equilibrium point.

In this paper we discuss Kirschner and Panetta model,
analytically and numerically in a fashion like the work
of El-Owaidy and EIl-Sheikh [5] , El-Sheikh and
Mabhrouf [2] and [3], Zaghrout and El-Sheikh [17] and
El-Sheikh et al [4].The model in this paper can be
summarized briefly as follows, tumor cells are tracked as
a continuous variable as they are large and generally
homogeneous; they are defined as y(t). Immune cells are
those cells that have been stimulated and are ready to
respond to the foreign matter (known as effector cells);
they are defined as x(t) and assumed also to be large in
number. Finally, effector molecules are represented by
z(t).These are self-stimulating proteins for effector cells
which produce them. The equations that describe the
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interactions of these state variables are given by the
following mathematical system (see[7]):

x pxz
—=cy— X+ +s la
Y 1 | (1a)
dy oxy

—=1,y(1-by) - (1b)
dt g,+y

&2 _ P s, (10)
dt g,+y

In equation (1a), the first term represents stimulation by
the tumor to generate effector immune cells. The
parameter ¢ is known as the antigenicity or strength of
this characteristic. The second term in (la) represents
natural death and the third is the proliferative
enhancement effect of IL-2. s: represents a treatment
term where by a physician administers effector cells that
have been taken from a patient, stimulated to a large
degree, and then subsequently infused back into the
patient. In equation (1b), the first term is a logistic
growth term for tumor growth, and the second is a
clearance term by the effector cells. In equation (lc),
IL-2 is produced by effector cells (in a Michaelis-
Menton fashion, i.e. dose response) and decays via a
known half-life (third term). The second term, s: is a
treatment term that represents administration of IL-2
(manufactured) by a physician to a patient, to again
stimulate effector cell growth and proliferation. To help
with interpretation of the mathematical results, we
present a table of parameters for ease of parameter
interpretation:

¢ (antigenicity)
P, (proliferation rate of immune cells)
r; (cancer growth rate)
w3 (half-life of effector molecule)
g (half sat. for proliferation term)
W, (death rate of immune cells)
2> (half-sat. for cancer clearance)
b (logistic growth of cancer capacity)
p2 (production rate of effector molecule)
a (cancer clearance term)
t (time)
Table 1.Parameter Values.

In the present paper we consider the case of
immunotherapy with ACI and IL-Z (i.e. s> 0, s2> 0).
Our main aim is to discuss analytically the existence,
stability, and bifurcation of the steady states and to
improve some known results obtained for the Kirschner
Panetta system (1). The paper is organized as follows, in
Section 2, we discuss the dissipativeness and the
existence of equiliria of the system . In Section 3, we
study the stability in the neighborhood of each critical
points. In Section 4 we give sufficient conditions for the

permanence. In section 5 we establish sufficient
conditions for existence of a unique asymptotically
periodic solution using liapunov function. Our technique
used in Sections 4 and 5 depends on those of [15].
Finally, in Section 6, we give numerical simulations to
illustrate our theoretical results.

2-Existence and Dissipativeness

It is clear that the components of the right
hand side of the system (1) have continuous partial
derivatives on the space

R = {(x(1), y(0), 2(t)) : x(£) 2 0, (1) 2 0,2(t) 2 0}. T
herefore, the solution of the system (1) with non-negative
initial conditions, exists and is unique.

Theorem 1 The model system (1) is dissipative.

Proof By (1b), we have

dy

—< 1-b

i y(r,(1=0by)

ie.

y(t) £ ———— , forallt > 0, wherek = L—b.
b+ kexp(—nrt) y(0)

Thus

y(t)S%ast—> 0.

This means that y(¢) < %, for large t > 0. In fact this is

consistent with [8].
Now putting

W =x+y+z, then

deScyf,uszrMJrsl +r2y(17by)+w

— Iz +s,.
dt g +z g+ # -

. 1
But since y < g, we have

dd—W+0W <s +s, +%2,wheret9= min(u, 1, —(p, + p,),7, —©).
t

So by comparison lemma we obtain,
(s, + 5, + ) 3

Wo(t) <

(1) 2

(s, + 5, + rT’) ~ ~
(9—)—W(T)) exp —0(t-T),

for all t > T > 0,
If"T"=0,then
W< Gt st D oo o
0 0

ie.
Wiy < SRt sy

So, it follows that all solutions of the system (1) that start
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in Ri are confined to the region QQ, where

(5, +5,+2)

Q={(x,y,2) € Ri W= T‘ + ¢ fore > 0}(see[6],and[14]).

S
It is clear that the tumor free equilibrium point E (3,0, ﬂ—z),
3

51(gus +5,)

(81 +5,)— S,
Moreover there may exist multiple positive non-trivial
steady states, depending on the choice of parameters,
E,=(x,,y,,z,) where ican range from 1to 3. namel

y

where x, = ,existsif p,s, < 1, (g4 +5,).

3- Local Stability and Hopf bifurcation

Since the Jacobian of the system (1) at any endemic
point (x, y, 2)

pz pP8&x
2 ¢ 2
&tz (g1+Z)
ag.x
Ty =| 2 p-2by) -
&+y (&, +»)
Py g3p2x2 — 1
&ty (&+) ]

The characteristic equation at the tumor free equilibrium

point E, (XI,O,S—Z) is
s

P15, ax,

————p, — Allr, - - Al-p;5 - 2]
giM; + 5, &>
The eigenvalues are
p.S ax
A= ——F—— Ay =1, - S Ay =
giH; t 58, &

Then clearly equilibrium point E: is asymptotically
stable
— P )

HrH\ 8, ,and's, > 824, [/Uzluzgl +5, (4,
Py — M, a H38 +5,
unstable otherwise ( This is consistent with [7]).

if s,< 1, and

Now choosing ¢ as a bifurcation parameter for the

system (1). Letc,be the value of cat which the
characteristic equation on the neighborhood of Ei, has
two pure imaginary roots /11 5

In the following result, we deduce sufficient conditions
that guarantee the occurrence of Hopf bifurcation.

Theorem 2 Suppose that the following conditions hold

Z.
(4) L5 <y,
&

i

ag,X;
(g2+Yi)2 ’
PiPxi (g, + )
ca
CPizi(g 2085 + Vi) + PyPigiNY
M3l

then at ¢ = ¢, there exists a one parameter family of

(4,)r,(1-2by,) < and

(45) <(g1+Z[)2(g3+yi)

>

periodic solutions bifurcating from the critical point
E =(x,y:,z2)

T —T, asc —c,and where T, =27/w, = 27[/\/tmceJ” .
Proof. Since by the assumptions (A4,)—(4,), there

with period T, where

exists at least one real root As of the cubic equation
A(trace) A*+(traceJ ) A- det J=0, 2)

where the matrix J ¢ is the first compound of J .

Now since
traceJ =% Uy — Uy +r2(1—2by,.)—%g72x"2,
g tz; (g, +))
C Zi & xi
trace]” = [, P Z 4 [ (1-2y,) - 2825
gi+z (& +y)
Dz PP X ) cay;
[ -, — 3] ,and
gtz T (g+2) (g +y) &+,
P\zZ; PP %),
detJ =—[u;( —p )t
Yatz T (g +z) g+ )
[ry (1= 2y, 82X Citty _
(g, +y) &,V

ag1g3p2p1x‘.2y[
(8 +2)° (8 +¥.) (8, +)
So we have the following factorization

(A-2y )[ A7 +(0y-trace]) A + (A} -(tracel) J+trace] <) ]=0. (3)

But since by (2), we have

A+ A, + A, =traceJ
Therefore the remaining roots Ai,A2 of (2) are of the
form

o=y {—[ﬂg—traceJ]i\/([ﬂg—traceJ]? —d(2-(trace])+traceJ ) }.(4)

Going through as in [5] and [11], we see that at ¢ = ¢,

Ay=traceJ, /IIZZ , moreover Eq(2) canbe written as

F (traceJ)=(traceJ)(traceJ © )- det J=0.

It is clear  that],=traceJ <0, traceJ >0and

detJ <0, sincedetJ <0,c¢>0,andc=c, >0 is a

solution of the critical equation (5). In fact Eq (5) can be
represented by the following straight line.
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a+bc=F,(traceJ) =0, where

Pz og,x;
a=—[—"—— i, ][, (1-2by,) -——"—
g t+z (g, +y)
Pz ag,x;
[ : —Hy = 2u; +1,(1-2by,) - . 2]+
g t+z (g, +y)
Pz ag,x;
M [ =ty + 1y (1= 2by,) — ——
172 (g, +y)
2
Qg83P2P1 X )i P\z;
—H, — Myt
(gl+zi)z(g3+yi)2(g2+yi) &tz ’ ’
g, X; Dz
7 (1=2by,) = —2~— = 4ty ]
(g, +») &tz
biz; Si1P2Pi X Y
[y (== ,) + 2 ], and
g, t+z (g +z) (g +y)
P,z ag,X;
b=[———pu, = p +r,(1=-2by,) —="—].
g +z (&2 + )

Conversely, knowing that

detJ <0and traceJ <0,c >0, we can solve equation (5)

for c.>0, we then know that

traceJ: >0, A, =traceJ, and A,A, are conjugate

imaginary.
Since b > 0,lim F (traceJ) = -o,and lim F (traceJ) = +w,

Fe(trace])

Fig.1. The uniqueness of the bifurcation parameter C,

Now, since by (2), 1, = traceJ, and

F, (trace)) =[trace] — L,][4 4, + (trace]) 4]
sgnF, (traceJ) = sgn(traceJ).

Consequent ly if ¢ > ¢, then Re 4, , = %(tmceJ -1,)<0,

and forc<c,,ReAd;, >0 (see Fig.1.)
By the above discussion, we see that as ¢ increased

through c_, there exists a pair of complex conjugate

imaginary eigenvalues A, , of the Jacobian matrix J°.

Sinceatc =c,_, then A; =traceJ,and 4, = ttraceJ* =tiw,,

where it is clear that @, > 0.

Now, Since for 4, = /17, we have

ReZ,, =10+ ) = ate =c..
So, wehave Re4,, >0forc<c,

Re 4, >0forc<c,.

Moreover

d 1 d

— (Re 4, )‘ =7 A,— trace)‘czc( = Re(d—c A )‘ o, < 0.
This completes the proof.
4-Permanence
We first give the following preliminaries.

Definition 1[15] We say that the system (1) is
permanent if there are positive constants mand M such
that for each positive solution (X, (t),X, (t),x,(t)) of
the (1
m< 11301 inf x,;(¢) < }LIE sup x,(t) <M ,wherei=1,23.

system satisfies
Definition 2 [15] A solution X(¢,¢,¢4) is called
ultimately bounded. If there exists B> (Osuch that for
any, t, 2 0,¢ € C,there exists T =T(t,,¢) >0 when
X(t,1,,4

t>t +T, <B.

Lemma 1[15] If
a>0,b>0, and%kx(b—ax), for >0, and x(0) > 0,

we have liminf x(r) > 2, while if
t—o0 a

a>0,b>0, and? <x(b—ax),fort >0,and x(0) >0,
t
. b
we have lim sup x(z) > —.
>0 a

Now we give the following permanence result.

Theorem 3 Let M:1,M:,Ms,m:,mz, and ms be defined

by
c
e 1

M= b M= M= Pyt 8 mlzi m,= &1 — oy
H =D b H Hy &b

s
and m;=-2 . Further assume that
H

(H)):p, <p,,and
H,):g,r; >aM,, hold,
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Then the system (1) is permanent. This means that there
exist positive constants ., M, (i =1,2,3) which are
independent of the solutions of the system (1), such that
for any positive solution (x,(t),x,(t),x,(t)) of the
system with the initial conditions
x0)20G=123),
we have
m; <liminf x,(¢) < xhg.} sup x; (t) <M ,.

=0

Proof. Let (x,(t),x,(t),x,(t)) be any positive solution

of the system (1) with the initial value

(x,(0), x,(0), x,(0)) . It follows from the first equation of
(1) that

dx, _ n DX X5 +s,.
dt g, +x,

Now by Theorem 1, we have

dx, ¢ + X
< s+ () )x,

dt b g, +x
ie.

dx c

7[1_(171 — )%, < Z+Sl'
According to the theory of differential inequality , we

¢
+ 5, — 4+,
gty= b oy + x(0)]exp( py = 42t
S My — Py

Further since p, < i, , then

c
—+5

=M,. (6)

limsup x, (¢) <
o Hy =Dy

Thus for any positive constant £ > 0, it follows from
(6) that there exists a 7, > 0 such that for all ¢ > 7}, we
have

X, <M, +e. @)
Similarly by the second equation of the system , we have

by Lemma 1,
. 1
lim sup x, (¢) ngMz.
t—o0

®)

Consequently for ¢ > 0, it follows that there exists
aT, >0 such that for all > T, ,we get

X, <M, +¢ )
Similarly from the third equation, we have
X, <M, +¢ (10)

But since from (1.a)

dx X, x
B ox, - pyx, + 25
dt g, +x,

+S

28 = My X,
It follows that

liminf x, () = -~ = m,. (11)
—w /le
Similarly, from (1.b) and (1.c) , we can easily show that
—aM
liminf x, (r) = £22 %20 | (12)
o g,hb
and
liminf x, (£) = 22 = m,. (13)
—w

3
Thus the system (1) is permanent.

5-Existence and Uniqueness of Asymptotically
Periodic Solution

Following [15] we consider the asymptotically
periodic system as follows,

dx
E_f(t’xr)

where f e C([-r,0],R")and for any x, e C . Define
x,(0)=x(t+6),0 [-r0]. Forany

(14)

n .
X =(x,X,,..x,) € R,we define |x| = |x|, fromsec4, It

i=1
is easy to see that there exists H > 0, such that

x| <nM, < H.Forany ¢ € C, define H¢H = sup ‘¢(9)‘
—-r<6<0

LetC, ={peC, ¢H<H},andSH ={xeR", x‘<H}.

In this section we use the same technique [15] to discuss
the existence and uniqueness of asymptotically periodic
solution of system (14), we consider the adjoint system

dx
;;; _.f(t’xt)
%#(r,y,) (15)

The following lemma is needed

Lemma 2 (Yuan [15,16]) Let Ve (R, xS, xS, ,R,)
satisfy
@) alx =) <V (t,x,y) <b(x~y),

b(r) are are continuously positively increasing

where a(r) and

functions;
@) (12,3 =V (1 x5, )| S Ux, =26, [+ [y -,
where [ is a constant and satisfies [ > 0;

)9

(iii) there exists continuous non-increasing function
P(s), such that for s >0, P(s) > s,and as

PV (t,4(0),4(0)) > (V (1 + 0,4(0),¢(0)),0 € [-r,0],
it follows that 7, (1, #(0), §(0)) < —8V' (1, §(0), 4(0),
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where O is a constant and satisfies & > 0. Furthermore,
the system (15) has a solution '(¢) for ¢ > ¢ and
satisfies |£'(¢)[ < H. Then system (14) has a unique

asymptotically periodic solution, which is uniformly
asymptotically stable.

Theorem 4 Let ¢, 0,,0, and & are defined by
cM, s, ag, _p2M2(1+g3)

0,=M,[ + 1,(16)
l l]‘412 ]‘412 (gz+Mz)2 m3(g3+m2)2
M
0, = M, [rp——— L2085 g (17)
m; my(g;+m,)
0, :M3[L22_ D& ~ plm;mz(m2+g23)]‘ (18)
My (g +m)”  M;(g +M,)
0 =min{b,,0,,6,}. (19)

respectively. In addition to the conditions (H,) and
(H,), we assume further that § > 0, then there exists a
unique asymptotically periodic solution of system (1)
which is uniformly asymptotically stable.

Proof. By Theorem, we know that the solution of the
system (1) is ultimately bounded. Consider the adjoint

system of the system (1) as  follows
dx X, X
—L=cx, — i,x, +@+s1
dt g, +x
dx ox,x
—2=1,x,(1-bx,) - —
dt g, +x,
dx XX
73:@_#3)53_,_52 (20)
dt  g,+x,
du uu
—L =cu, — pu,u, +b—irsl
dt g, +u,
du ou,u
—2=ru,(1-bu,)-——
dt g, +u,
du u,u
3:p212_ﬂ3u3+sz.
dt  g,+u,
For

X(1) = (x,(1),x,(),x;5(1)) and U(t) = (u, (£),u, (t),u;(¢))
are the solutions of system (20) in QxQ. Let
x; (t) =Inx,(¢),u; =Inu,(t),i =1,2,3.

Consider a Liapunov functional in the form

RN ACENG]

ey

By taking a(r)=b(r)=
i=1

x; (t)—u;(t)‘ and using the

inequality Ha‘ - ‘bH < ‘a - b‘ the proof of condition (7),
and (ii) of Lemma 2 be as [15]. Now to prove (iii) of
Lemma 2. It follows from (21) that

IR0
DVO= 2

then we have

) x sign(x; () —u, (1)),

X X N u
DVH< c—2—u, —I—£+—l—c—2—i-,u2 -
X1 g tXx; X U
au,
g, tu,

_5

DU; Sy
= ——+r, —1ybx, —
&g tu; u

Py X, Sy

3
x;(g; +x,) X3
Furthermore,

—r, +rbu, -
g tXx,

Py,

————+ .
u,(g; +u,) Us

—cx, 8

S5 g, "
ux; (g, +x,)(g, +x,)
PrX, Uy P2g5U,

Uy (gy +uy (g5 +X,)  X,(8; +uy)(g; +x,)
b+ Pa8s%: b [ —2— 4
u x5(g;5 +u,)(gs +x,) X3ls
P& _ PrX XU, _

(g +us)(g +x;) X3u3(gs +u, g5 +x,)
P &3uU U,
x3us (g5 +uy)(g; +X,) .

DV < |x,-u, [{ —
11

}+‘x2-u2‘

Using Lemma 2, we get
S g, —+
(g, +M,)

—Ccm
D V(1) <|x,-u, | 2L
M12 M12
M; M
P M, . P, &3M, 2}+‘x2-u2‘{i—
m;(gs +m,) my(gy +m,) m
M
P&3M, 2}+‘x3-u3‘{— s22+ P8 .
my(g; +m,) M; (g, +my)

2
pymm,

rb+

_ _ b gsmm,
M32(g3 +M2)2 M32(g3 +M2)2

Since

x, () = u, (0] = |exp(x] (£)) = exp(u; (1)

=lexp & (]}, (1) —u; (1), (23)

i (22)

where ¢, (¢) lies between x,(¢) and u,(¢) then, we have
x; () —u; (0 < [ -u (0] < M| () —u] (0] i=12.3.
(24)

m;

Substituting from (25) into (23), we get
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M2
D+V(t)£—{cm§ n S12 + ag, - P M, _
M7 M7 (g,+M,) my(g; +m,)
M . «
P28y () - (0] - (b - <~
m,y(gy +m,) m,
D&M, * * S, P&
— 2L @) —us ()| - (A - — B8
m3(g3+m2)2} 2‘ () 2()‘ 1]‘432 (g1+m3)2
172’”1”122 prg;mm,

M3 (g, +M,)’ ML ()~ (1),

This can be written as

M (g +M))

D) <=0, |x; (1)) —u; ()] = 0, (6) —u5 (1)
= 0,[x3 (1) —u3 (1), (25)
where 6,,0,,and 0, are defined in (16)-(18).
Consider ¢ as defined in (19). It follows
DV () <-6V(2). (26)

Then (iii) of Lemma 2 is fulfilled. Therefore the system
(1) has a unique positive asymptotically periodic
solution in the domain Q, which is uniformly
asymptotically stable. This completes the proof.

6- Numerical Results

In this section, we perform numerical simulations with
the help of parameter values taken from experimental
data from published literature. Using Fourth order
Runge-Kutta method through out matlab programme.
For this purpose we consider the following parameter
values

c=.05, 1, =.03,p, =.1245,g, =2x10",1,=.1,b=1x10",
a=1,g,= 1><105,p2 =5,g, =1000,m,=10,s, = 30, and
s, = 20 with the initial conditions x, =1000, y, =1000, and

z, =1000. It clear Fig.2. that the system (1) is a stable
spiral .

Effactor

X
BEEEEREE

L L L L L L L L L
L) 1M 200 300 400 500 600 700 S S 1N
tme 1

(2-a) The time response of effector cells

E

Tumer

i § 0§

=

1M 200 300 4M SM  6M 700 B0  9M 1M
fme 1

(2-b) The time response of tumor cells

TEREE

g

L L L L L L L L L
L) 1M 206 3 400 S50 G0 T 8 SM 1MW
time t

(2-c) The time response of IL-2

Tumor y

(2-d) Spiral focus of system (1)
Fig.2.The dynamical behavior and the projection of the
solution of the system (1).
For the initial conditions x, =200,y =1x107, and z, =1x107

and parameter values ¢ =.005,u, =.03,p, =.02,g, =2x 107,

rn=1b= 1x10°, a = Lg, =1x 107,p2 =5,g, =1000,1,=10,
s, =30, and s, = 20 the conditions H,,and H, hold.
Moreover, Fig.3 Shows that the system (1) has a unique

positive periodic solution which is globally
asymptotically stable.
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LR

o
0 1000 2000 MM A0 5000 G TOO0 SO0 SD 10D
e t

(3-a) The time response of effector cell

=0’
2 .

il il

o
0o 1 2000 3000 4000 5000 5000 THOO0 B000 G000 10000
fme 1

(3-b) The time response of tumor cells

="

il i

O 1A 20 30 4000 5000 G0 TN B0 SN THHH
fme t

(3-¢) The time response of IL-2

Tumor y LI ]
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Fig.3.The dynamical behavior and the projection of the
solution of the system (1).
Fig.4. represents the chaotic attractor of system (1) at the

the initial conditions x, =1000,y, =1000,and z, =1000.

with the parameter valuesc =.0Lu, =.03,p, =.02,
g, =2x10",r, = 1,b=1x10",a=1,g, =1x10°,p, =5,
g, =1000,u, =10,s, =30, and s, =20.
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Fig.4. The dynamical behavior and the projection of the
solution of the system (1)

7-Conclusions

In this paper, we discuss a tumor-immune dynamical
Kirschner model . We improve some results in literature.
We focus on the case of immunotherapy with ACI and
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IL-Z. We established the local asymptotic stability of the
tumor-free equilibrium point E,. Our results are

consistent with those obtained by Denise Kirschner et al.
[7]. We prove the existence of Hopf-Andronov-Poincaré
bifurcation using the technique of Pimbley [11], El-
Sheikh.[2],and [3]. Also, we used a technique similar to
that used by Changjin Xu, and Qiing Zhang [15] to
obtain sufficient conditions for the permanence of the
system. By constructing a suitable Liapunov function,
we give sufficient conditions guarantee the system has a
unique asymptotically periodic solution which is
globally asymptotically stable, see Fig.3.
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