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Abstract: A new two-parameter truncated Lindley Gamma distribution (TLG) is proposed and its properties are

studied. These properties include; the behaviour of TLG density function and hazard rate function, moments and the
associated measures, reversed hazard function, mean residual life, Lorenz and Bonferroni curves. Point estimation of
the parameters using the maximum likelihood and method of moments. Moreover, the interval estimation is
investigated. Simulation schemes are carried out to examine the bias and mean square error of the estimators. Finally, a

real data application illustrates the performance of TLG and compared with some well- known distributions.
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1. Introduction

A lifetime distribution represents an attempt to
describe, mathematically, the length of life of a system
or device. With the advancement in technology, new
and complex types of consumable items are being
produced every day. To model the failure data of such
types of new devices we need more plausible statistical
distributions to be considered as lifetime and reliability

models.

Numerous other parametric models have also been
suggested and used in the analysis of lifetime data.
Most of them are positively skewed statistical
distributions with range restricted to positive part of the
real line. Among others, exponential, gamma, Weibull
and lognormal are most frequently used lifetime
models. Pareto, Burr and half normal have also been
used to model lifetime data. In addition, Lindley
distribution is considered one of the famous

distributions for lifetime data. It was first proposed by

Lindley [10] in connection with the fiducial
distribution and Bayes theorem. It was compounded
with Poisson distribution, by Lindley [9] and later by
Shankaran [14]. In a recent study, Ghitany et al. [5]
have discussed Lindley distribution in detail with its
applications and real data example. For more detail of
these distributions, see Lawless[7] Mann et al. [11],
and Sinha[15].

In reliability studies a sample of n items is put on test
and the experiments is terminated when all of them
fail. This procedure may take a long time when the
lifetime distribution of items has thick tail. Moreover,
if the items are expensive such as medical equipment,
it is costly to gather the whole sample information.
There are many situations where experimental units are
lost or removed from the test, before the complete
failure. For example, the individuals in units may
accidentally break. In other scenarios, the experiment
may have to be terminated in order to free up testing

facilities for other purposes. For these situations, the




W.A.Hassanein

Truncated Lindley Gamma Distribution

truncated distributions are quite effectively used where
a random variable is restricted to be observed on some
range and these situations are common in various

fields.

Many researchers, therefore being involved to the
problem of analyzing such truncated data encountered
in various disciplines, proposed the truncated versions
of the usual statistical distributions. Singh et. al.[16]
introduced Lindley distribution with truncation. Ahmed
et al. [2] discussed the application of the truncated
version of the Birnbaum-Saunders (BS) distribution to
improve a forecasting actuarial model and particularly
for modelling data from insurance payments that
establish a deductible. Aban et al. and Zaninetti et al.
[1,17] discussed the application of the truncated Pareto
distribution to the statistical analysis of masses of stars
and of diameters of asteroids. The truncated Weibull
distribution has been found to apply in various fields
such as to analyze the diameter data of trees truncate
data specific threshold level, to model the diameter
distribution of forest, to characterize the observed
Portuguese fire size distribution, to seismological data,
etc. For more detail on the truncated Weibull
distribution and related references readers may refer to
Murthy et al.[12] covered the subject of Weibull
distribution and recently published article Zhang et al.
[18] based on the truncated Weibull distribution.

This paper is organized as follows: Section 2 introduces
the main structural prperities include; the probability
density, cumulative distribution functions. In Section 3,
the hazard, survival, mean residual life functions are
derived and studied. Section 4 includes the moments and
the associated measures of TLG. Characteristic and
moment generating function are obtained in Section 5.
Lorenz and Bonferroni curves are derived in Section 6.
Section 7 includes the point and interval estimation of
TLG parameters. The order statistics is derived in
Section 8. Section 9 includes the simulation study for
TLG. Finally, a real life application is illustrated in
Section 10.

2. Structural Properties
2.1. Probability density function

A non-negative random variable X is said to have the
TLG distribution with parameters 8, 3, if its probability
density function (pdf) is given by:

6 .. 1
f(x;6,B) = T Lindley (6, 8) + T Gamma
(2,6,8)

0 02(1+x)

= e_g(x_ﬁ)
1+606(1+pB)+1

1
+——0%(x — B)e ?F

1+6
62 O(1+%) \ _g(x—
f(x;6,8) =m((x—ﬁ)+e(Tﬁ;1)e 0B x >
B.6>0,>0 (1)

The behavior of the p.d.f. of TLG distribution at x =

and at infinity are given by

FB) = (1+0()1(-:5219iﬁ)0) ’ ;!i_r»gf(x) =
Theorem 1.

The p.d.f.f (x) in (1) of TLG distribution is
(a)decreasing if 8 > 1,6 >0,x > f
(b)unimodal if 0 <8 <1,>0,x>p
Proof.

The first derivative of f(x) is obtained from(1) as:

F10) = (eMN(=x+p)0) 02 (1—0(—=2+x+86
+xQ2+B)O—-BR+0
+B6))))/((1+6)(1+6 +p6))

By solving f'(x) =0, for0<6<1,8>0,x>

B, the mode x,is

_ 1+260+286 — 6%+ B6* + p?6?
% = 9(1 + 26 + 9)
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Where, the second derivative of f(x) is given by

f'x) = (Ee"(—x+p)8)6"3 (-2 +6(-4+x+86
+x(2+p)0—-B(B+0
+£6))))/((A +6)(1+ 6 + 6))

Andf"'(x) at the point x,is :

—1+0(=2+B(-1+6)+6)
Frag) = ¢ +2+F)e 03(1+(2+8)6)
0 (1+6)(1+6+56)

f (x) has aglobal maximum at pointx,.Moreover,

< 0 ,then

Inf(x) =2In(0) —In(1 + 6)
+In((x-B)OA+B)+1)+06(1
+ x))
—In((eQ+p+1D))—0(x—p)

dinf(x) 1420+ 6B .
dc x-POA+RH+D+6(1+x)

d*Inf(x) 1420+ 6B
dx2 & -RPOA+R + 1D +6(1+x)

)2

Hence, f(x) could attain a maximum, or a point

2
L < gand if 0>1,8>0,

inflection where 3
dx

%< 0 then f(x) is monotonically decreasing
vx > f.
fx)
o |
0 =0.5
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o |
0= 0.1
=
Il Il 9 \= 1 k x -
e S R 8 9. m
B =0.01
fX)g — =5
9_—31)539 B=2 x
f(8=0. x
B=10

=0.01,01<6<05

B=21<6<5

Fig. (1): p.d.f. of the TLG at different parameter values

2.2. Cumulative Distribution Function

The cumulative distribution function (c.d.f) of TLG

distribution:

_ _ L —0x=p) 6(x—B)(1+26+6B)
F(x) (1 e (1+ (1+8)(1+6+6pB) ) x>

B,6>0,6>0(2)
2.3. Quantile Function

Let X denote a random variable with TLG density
(1).The quantile function,Q (p) , defined by F (Q (p)) =

p is the root of the equation;
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Q) =(-1+0(-2+(-1+pB)60+p6B)—(1+26
+ 6B)ProductLog[(e”(—((1 + 8)(1
+60+60))/(1+26+6B)) (-1
+P)1+0)(1+6+p60))/(1+206
+6B)D/(6(1 + 26 + 6B))

3. Reliability Measures
3.1 Survival function

The reliability (survival) of TLG is defined by

— L —0(x-P) 0(x—B)(1+26+6p)
S(x) e (1 + (1+8)(1+6+6pB) ) x>

B,0>0,8>0 3)

3.2 Hazard rate function

The hazard (or failure) rate function is defined

f
as h(x) = %,

62(x+0+x(2+B)0-B(1+6+B6))
1+0(2+x+0-B(1+B)0+x(2+B)6) ’

h(x) = X >

B,6>0,>0(4)

The behaviour of h(x) at x = and at infinity

respectively,is given by

(1+p)63
(1+6)(1+0+p6)

h(B)=f(B) = . lim h(x) =9

Theorem 2.

The hazard rate function h(x) of the TLG distribution

is increasing
Proof.

, . d M)
Using Glaser[6] ,since n(x) = —aln fl) = oo =
_ 1426468

(x-B)OA+B)+1)+60(1+x)

1+20+6 )2
(x-B)O(1+B)+1)+6(1+x)

It follows that; n/(x) = (

For > 0,1n/(x) > 0, i.e n(x) is increasing . Therefore

h(x) is increasing Fig(2).

06

05

h(x)

05

Fig. (2): Hazard function of the TLG at different parameter values

10

3.4 Reversed hazard function

Reversed hazard function is defined by r(x) = % )

then for TLG distribution

r(x) =

X +B)092 (x 10+ x(2+B)0-B(1+6+B6))
—(1+0)(1+0+B )+e*¥+BO(1+0(2+x+0-B(1+B)O+x(2+B)0)) ’

B,6> 0,8 > 0(5)

Thereversed hazard rate function r(x) of TLG

distribution is decreasing.

r(x)

03

02 //
na [

x >
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Fig. (3): Reversedhazard function of the TLG at
different parameter values

3.5 Mean residual life function

The mean residual life function u(x) = E(X —x | X >
x)of TLG distribution is defined by

—1 OOR d
M@—RBL (©)dt

2(3+6(6+x+0+x(2+B)0—B(~2+6+B6))) 6)
02(1+0 2+x+0—B(1+B)0+x(2+5)8))

The behaviour of u(x) at x = 0 and at infinity,

respectively , are driven by

0) = 2+0(4+B+0—-B(1+5)0)
H T 0(1+6(2+6-B(1+B)0)) °

lim p(x) =+
x—00 (]

For TLG distribution the mean residual life u(x) is
decreasing Fig 4, since h(x) isincreasing according to

Lemma(2), Brysson and Siddique[3]

1(x)

15r

: 0=03p=1
5,
0=05,p=1
1 L L L 1 L L 1 L L L x
4 6 8 10

F lg(4) Mean residual life of TLG at different parameter values

4. Moments and Associated Measures

The " raw moments (about the origin) of TLG
distribution is given by

M=E&U=Lfﬂﬂm

11

(7 e 01+%) . s
_f Tl el dx
B

= -r —rRror 1+r
T REYEYD) 67" (BO) T (BTOT(BO)Y (1
+@2+p))+efPA+r+r2+p8)O+62 - (-1
+ B+ B2 (BO)T[r] + 707 (-T[1 + 7] +I1
+7,860])))

The first four moments about the origin of the TLG
distribution have been obtained as:

_2460(4+0+BB+0(3+B+ 6 +B6)))
b= 8(1+0)(1+06 +56)

1wy = (6+0(2(6+80)+B10+62(5+06)+BG
+0(4+B+06+p6)))))/6"2(1
+0)(1+ 6+ B0))

s = ((24 + 6(6(8 + 0) + B(42 + 6(6(7 + 6)
+BR24+6(B6+0)+p(7+06(5
+ B +6+£6))))))))/(673 (1
+0)(1+ 6+ B6)))

1, = ((120 + 6(24(10 + 0) + B(216 + 6(24(9 + 0)
+B(132 4+ 6(12(8 + 6) + (44
+O04(7+0)+BO+0O6+B+06
+£6))))))))) /(64 (1 +6)(1
+ 0+ £0)))

Therefore, the mean and variance of TLG distribution
respectively , are

_ 2+60(4+0+B(3+0(3+B+0+p0))) 0_2 _
0(1+60)(1+6+56) ’
2+4(2+B)0+2(6+L(6+8))0%+4(1+B)(2+8) 03 +(1+8)% 64
62(1+0)2(1+6+56)2

The first four central Moments about the mean are then
given by:

e = E[(x — 1)¥]

= Q2 +4Q2+PB)O+2(6+B(6+P))O2 +4(1
+R2+p)e"3+ [
+p)] ~267) /672 [(1
+6)] 2 [(1+6+p9)] *2)

ps = 22+ 62+ )0 +6(5 + B(5 + B))0* + 2(2
+B)(10 + B(10 + B))6° + 6(1
+B)G+BG +B))o*
+6(1+ )2+ p)e°
+(1+8)*0%))

/(03(1+6)3(1+ 6+ B6)°)
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U, = (3(8+32(2+ )0 +16(14 + B(14 + 35))6?
+32(2+ B)(7 + B(7 + B))63
+4(139 + B(278 + £ (179
+28(20 + B))))6* + 8(1 + B)(2
+ B)(27 + (27 + 4B))6°
+ 4(1 + B)2(50 + B (50 + 11B))8°
+24(1+ B)3(2 + B)67
+3(1+ ﬁ)498))
/(0*(1 + 9)4(1 +6+ [)’9)4)

The skewness (f;) and kurtosis (f5,) measures can be
obtained from the expressions

B =
A

(2+4(2+B)0+2(6+B(6+B))02%+4(1+B)(2+B)03+(1+[)20%)3

B, =
B

(2+4(2+B)0+2(6+B(6+B))02+4(1+B)(2+B)03+(1+)20%)2

Where,

A=(4QR+6(+B)O+6(5+L(5+pL)O>+2(2
+ B)(10 + B(10 + B))63 + 6(1
+B)(5+B(5 + B))e*
+6(1+pB)2@2+ /%’)65
+(1+8)%0%%)

B =(3(8+32(2+ )6 + 16(14 + (14 + 3B))6?
+32(2+ B)(7 + B(7 + B))63
+4(139 + p(278 + (179
+2B(20 + B))))6* + 8(1 + ) (2
+ B)(27 + B(27 + 45))6°
+4(1+ B)?(50 + B(50 + 11ﬁ))96
+24(1+ B)3(2 + B)67
+3(1+ ﬁ)498))

5. The Characteristic and the Moment generating
functions

The characteristic function of TLG distribution is given
by

T g
o(0) = f e (e (= )
B

LA+ | eaep
WY S )dx

ef92(1+ 602+ L —it(1+p)+6 + o))
(14 6)(—it +8)2(1 + 6 + p9)

The moment generating function of TLG distribution is
given by

Me(6) = j e (1 (= B)
B

0(1 + x)

+ m)e_g(x_ﬁ)) dx

_er1+ 02 +B—t(1+B)+6+p0o))
B (t—6)2(1+6)(1+6+59) ’

6. Bonferroni and Lorenz Curves

The Bonferroni and Lorenz curves and Gini index have
many applications not only in economics to study
income and poverty , but also in other fields like
reliability , medicine and insurance .

The Bonferroni curve Bp[F(x)] is given by

Be[F(0)] = — [ uf (wdu ,

WF(x)
Equivalently given by

_ 1 pp-1
Br(p) = [V P (©)dt
where p = F(x) and F~1(¢) = inf{x: F(x) = t} .From
the relationship between the Bonferroni curve and the
mean residual life lifetime given by theorem 2.1 of
Pundir et al.[13], the Bonferroni curve of distribution

function F of TLG distribution is given by

Be[F(x)]=1/(((2+6(4+06+B(B+06(3+p+86
+56))))/(0(1 +6)(1+6
+ )1 = (e*((B-x)0) (1
+02+x+60—-F(1+L)0+x(2
+p)6))/ (A +6)(1+6
+ 80N J _prx [u6or2/(1
+O)((u-p)+ @O0 +w)/O01
+ )+ 1)er(—0(u — p)) dul

Bp[F(x)] = C/((((1+ 6)(1 + 6 + BO) — e ((—x
+B)O) (1+0(2+x+6—-p(1
+B)O+x2+ BN +0(4+0
+BB+6@B+B+06+56)))))

Where,
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C=((@Q+6)1+0+p0)2+0(4+0+B(3B+6(3
+ B+ 6 +8))) —ex¥HO(2
+0(4+p+60—-pA+p)O
+x20(1+ 2+ B)8) +x(2+6(4
+B+6—-B(1+5)0))))

In addition, Lorenz curve of F that follows the TLG

distribution can be obtained by Le[F(x)] =

B [F (0)]F (x).

The scaled total time and cumulative total time on test
transform of a distribution function FPundir et al.[13]

are respectively obtained by,
Se[F(D)] = —f F() du, Gy = f S; [F(OIf (t)dt
Hence, for TLG distribution

SE[F)]=2+60(4+60+B2+0)) —er((—t
+8)0)2+60(4+p+6 -1
+B)0+t(1+(2+5)0))))/(2
+0(4+0+BB+63+p+6

+86))))

Cr=D/((6"2 (1 + 6+ pO)((1 — (e"((—x
+B)0) 1+6(2+x+6-p1
+B)8 +x(2+£)6))/((1+6)1
+60+p0)2+6(4+0+p@3
+0@B+[+0+p6)))) x072/(1
+0)))

Where,D = (1 4+ 6)(1 +6 + BO) + eC1+HO(—1 +
0(=3+(-3+B))))R+0(4+60+B(B+63+
B+0+P0))—e P2 +04+p+0—-p(1+
BO+x20(1+2+B)+x2+0(4+p+0—
B+ B)6))))))

The Gini index can be obtained from the relationship =

1 - CF .
7. Estimation and inference

In this section, we consider maximum likelihood
estimation and method of moment estimation. In
addition, providing expressions for the associated

observed Fisher information matrix

13

7.1 Maximum likelihood estimation

Let x4, x5, cov vt

the TLG distribution with p.d.f (1). The log-likelihood

X, be a random sample of size n from

function £(6, B) is given by

L(,B) =2nlogb —nlog(1+6) +Z log ((xl B

0(1 +x;)
+9(1+B)+1> GZX +6np

It follows that the maximum likelihood estimators
(MLEs), say 8, 8, are the simultaneous solutions of the

equations,

U,(6,B) = —£(9 B

=nﬁ—zn:xi

i=1
n

1+xi
+Z(1+9+B€)(6—B(1+9+B9)+(1+(2+/3)9)xi)

i=1

2n n

%] 1+6
B =minx; |, 1<i<n
7.2 Method of Moments

The method of moments is another commonly
technique used in parameter estimation For the TLG
distribution , we have

2+60(4+6+B(3+0(3+B+0+B6)))
0(1+6)(1+6+8 ) ’

E(X16,B) =

Var(X16,8) = (6 + 6(2(6 + 6) + B(10 + 8(2(5
+O)+BG+O4+B+0
+50)))))/(6"2(1+6)(1+6
+ £9))

The method of moments estimates 8,y and By for
6 and B respectively, are obtained by solving the
equations :

E(XléMMEr[;)MME) =X, Var(XléMME'ﬁAMME) =

SZ

7.3 Information matrix
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The elements of the expected Fisher information
matrix = [Iij] ,,,j = 1,2, about (6, 8) from a single
observation are given by

d
hy = E[—?lnf(x)]
Iz = E[- aﬁz Sz f (]
2
L, =1, = E[- 2008 In £ (x)]
ooz ln f0)]

2 1 1+ p)?

_+(1+9)2 (1+ 6+ p6)?

(-1+B8+B*—x2+p)*
S (x+0+x(2+B)0—B(1+86+pB6))?

[ In £ (x)]

(1+x)02(-2+60(—4+2x—-65—-0+(x—2B) (3+25)0))
(1+6+p8 )*

1+x)0

1+0+p8 )?

0p?
-1+

(x=p+

2
[aeaﬁlnf(x)]
1
(146 +p6)?
1+x+x%—2xp + B2
(x+9 +x(2+pB)0—B(1+6+p0O))>

Applying standard large-sample theory of maximum
likelihood estimators, Lehmann et al.[8] we have

A
v (5 29) 5w,
BB :
d
Where— denotes convergence in distribution and 171

is the inverse of the matrix I.

Now the asymptotic variances and covariance of MLEs
6 and f are given by

ov(6,p) =3

1%, is the determinant of the matrix

var(9) = 2 var(ﬁ) = LX

where A= [11,, —
I.

The asymptotic 100(1 — a)% confidence interval of 6

and S8, respectively, are given by,d + za /, var(@) ,

0+ zay, va/r(\ﬁ) s

14

where /17(;(\9) s /17(;(7?) is the MLE of

var(d),var(p) and zay, is the upper #/, quantile of

the standard normal distribution.

8. Probability and Cumulative Function of Order
Statistics

Suppose X, X5, ... ..., X,is a random sample from TLG
distribution. Let X;., < X,., < - < X,,., denote the
corresponding order statistics. The probability density
function and the cumulative distribution function of the
kth order statistic, say Y = X;.,, are given by

— n! Fk—l 1
) = m 1
—FOI"*f()
&)
n! 6?
TTIKMM =k +n]° 1+9<(y_ﬁ)
+ o +y) ) -0y~ B)] [
61+p)+1
— e 006-B) (1

L0 -pa+20+ eﬁ))]"‘l | [e_g(y_ﬁ) (1
1+6)(A+06+6p)

N 0(y — B)(1+ 260 + eﬁ))]""‘

1+6)(1+6+6pB)

And,
R =) (m)Fmo) x[1-For™
m=k
K@) = Z (:l (
m=k

— e 00-B <1

1+60)(1+6+6p)

X I:e_g(y_ﬁ) (1

0y — B+ 26 + eﬁ))]n‘m

00y — B)(1 + 20 + 95)))m

1+6)aQ+6+6p)

9. Simulation Studies

The equation (x) —u = 0, where u is an observation
from the uniform distribution on (0,1) and F(x) is
cumulative distribution function of distribution is used
to carry out the simulation study to generate data from
distribution. The simulation experiment was repeated
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N = 1000 times each with sample sizes; n =
30,50,70,90 and (6, ) = (1,1),(0.1,0.01), (1,0.7)

.The following measures were computed:
6] Average bias of  of the parameter 6, 8

1 N
S .7=P)
i=1

(ii) The Mean square error (MSE) of the 7 of
the parameter 6, §

N

1

.7 =7?
i=1

Table (1) present the average bias and the MSE of the
estimates. The values of the bias are seen to be small
and positive and the values of the MSE’s decreases

while the sample size increases.

Table (1) :Bias and MSE for the parameters 0, 8

e | p |N ]?:)s MSE(®) | Bias(8) | MSE(B)
1 1 |30]00612| 00483 | 0.0399 | 0.0808
50 [ 0.0463 [ 0.0259 | 0.0375 | 0.0529
70 [ 0.0355 | 0.0194 | 0.0333 | 0.0389
90 | 0.0189 | 0.0137 [ 0.0152 | 0.0275
0.1 [ 0.01 [ 30 [ 0.0063 | 0.0005 | 0.4484 | 103194
50 [ 0.0048 | 0.0003 | 0.4146 | 6.7339
70 [ 0.0037 | 0.0002 | 0.3784 | 4.9484
90 | 0.0019 | 0.0001 [ 0.1726 | 3.444
1 | 07 [30] 00608 | 0.0480 | 0.0398 | 0.0846
50 [ 0.0461 [ 0.0258 | 0.0377 | 0.0553
70 [ 0.0354 | 0.0193 | 0.0336 | 0.0406
90 | 0.0189 [ 0.0136 [ 0.0152 | 0.0287

10. Application
This Section is devoted to illustrate the applicability of
TLG distribution to real dataset represent the strength
of glass of the aircraft window. The data is presented in
Table (2) of Fuller[4] and Singh,et.al.[15].TLG
distribution is fitted to these data and compared its
fitting with some usual survival distributions. Namely,
Weibull, Exponential, Gamma, Lindley(LD) and its
(LTLD,RTLD), Burr,

truncated models Logistic,

Loglogistic and Frechet distributions.
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Table 2:Strength of glass of the aircraft window

18.83 20.80 21.657 23.03
23.23 24.05 24.321 255
25.52 25.80 26.69 26.77
26.78 27.05 27.67 29.9
31.11 33.20 33.73 33.76
33.89 34.76 35.75 35.91
36.98 37.08 37.09 39.58
44.045 45.29 45.381

To compare the goodness-of-fit of above models, we
used the Akaikes
Corrected Akaikes

information criterion (AIC),
information criterion (AICC),
Bayesian information criterion (BIC) and Kolmogorov-
Smirnov (K-S) statistic, which are calculated form the

following formulae
AIC = —21log(L) + 2k
BIC = —21log(L) + klog(n)

2k(k + 1)

AICC = AIC + ————
Ry —

where, k is the number of parameters, n is the sample
size. Based on the data, the fitting summary including
the MLE’s estimates of the parameters, log-likelihood,
AIC,AICC,BIC and KS statistics values have been
summarized in Tables(3), indicate that TLG
distribution is a good competitor to other commonly
used in reliability field. Moreover, being the best fitting

considering AIC, BIC, -Log and K-S criterion.
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Table 3 : Fitted estimates for different distributions

]
e
(=]
Distributi Estimates Log AlC AlC BIC K-S %
on L C =
=
Gamma( | @ =4.5394 | 461.0 | 928.1 | 929.0 | 9324 | 0.129 é
a,B,y) B =3.4844 84 68 5 7 64
7 = 14.994
Burr @=61986 | 3106 | 6272 | 6281 | 6315 | 0.139 10 20 30 40 50
(@Bk) | p=34007 11 22 1 24 61 TLG
k=1.7253
Loglogisti | @ =4.6348 | 263.0 | 5260 | 5269 | 5363 | 0.135
@ B,7) £ =19.26 26 51 40 53 87 -
[}
7 =10.442 s
Frechet( | @ =4.8652 | 1053 | 2147 | 2151 | 2176 | 0.167 %
a,f) B =26.502 84 68 96 36 57 E
Exp(Lv) | A=008346 | 107.9 | 2199 | 2203 | 2228 | 0.201 S
v =18.83 84 68 97 36 09
LD(6) 9 =0.06299 | 1269 | 2259 | 256.1 | 2569 | 0.333
9% 88 26 71
RTLD( | 6 =0.00754 | 1102 | 2244 | 2248 | 2234 | o.184
6,6 £=45381 16 31 60 14 50
Weibull( | @ = 0.00017 | 113.0 | 230.1 | 2305 | 229.1 | 0.225 a
a,p) B = 25046 67 35 63 17 % 40
LTLD( | A =010974 | 107.1 | 2182 | 2186 | 217.1 | 0.15 = .
[}
0,v) v =18.83 03 05 34 88 =
]
TLG(8,8) | 6=0191 | 1044 | 2128 | 2132 | 2157 | 0.120 é 20
£ = 0.894 2 4 69 08 83
10
10 20 30 40 50
Right truncated Lindley
Figure (5) illustrates the Q-Q plot for the considered
dataset for all distributions considered in this paper. -
From the above results, it is evident that that mixture of -
(]

C s . B 40
truncated reliability models in the for of TLG §
distribution could provide better distribution for fitting 2 30

=

c
the reliability dataset compared with other distributions 8 20

o
considered here. 10

10 20 30 40 50
Left truncated Lindley
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Fig.(5):Q-Q plot for the fitted distributions

11. Conclusion

In this paper, a left truncated Lindley Gamma
distribution (TLG) is proposed. The behavior of its
density, hazard function as well as several statistical
and reliability measures for the TLG distribution are
studied. The maximum likelihood and method of
moment estimators are constructed for estimating the
unknown parameters. In addition, interval estimation is
discussed. We have been compared through the
goodness of fit statistics and found that the left
truncated Lindley Gamma (TLG) distribution provides
more flexible to the data of the window strengths. It is
concluded that mixture of truncated reliability
distributions may give more effective to model real
problems .Hence, we can recommend the use of the left
truncated Lindley Gamma distribution as one of these
models in various fields where such type of truncated
data are commonly encountered.
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