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 In this paper a suggested algorithm to solve fully rough multi-objective 
integer linear programming problem [FRMOILP] is described. In order 
to solve this problem and find rough value efficient solutions and 
decision rough integer variables by the slice-sum method with the 
branch and bound technique, we will use two methods, the first one is 
the method of weights and the second is ε- Constraint method. The basic 
idea of the computational phase of the algorithm is based on 
constructing two LP problems with interval coefficients, and then to four 
crisp LPs. In addition to determining the weights and the values of ε-
constraint. Also, we reviewed some of the advantages and disadvantages 
for them. We used integer programming because many linear 
programming problems require that the decision variables are integers. 
Also, rough intervals (RIs) are very important to tackle the uncertainty 
and imprecise data in decision making problems. In addition, the 
proposed algorithm enables us to search for the efficient solution in the 
largest range of possible solutions range. Also, we obtain N suggested 
solutions and which enables the decision maker to choose the best 
decisions. Finally, two numerical examples are given to clarify the 
obtained results in the paper.  
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1. Introduction 

 Linear programming (LP) is one of the most 
popular models used in decision making and 
optimization problems. Many researches, 
studies and applications of LP models have 

been reported in numerous books, monographs, 
articles and chapters in books, for instance see 
[3,5]. Taha. H. T, (1997) Integer programming 
(IP) problems are optimization problems that 
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min or max the objective function taking into 
consideration the limits of constraints and 
integer variables. More widely application of 
integer programming can be used to 
appropriately describe the decision problems on 
the management and effective use of resources 
in engineering technology, business management 
and other numerous fields [15]. Rough set 
theory (RST) was initiated by Pawlak in 
(1982) as a method for ambiguity management 

[10]. RST approach has fundamental 
importance in the fields of pattern recognition, 
data mining, artificial intelligence, machine 
learning and medical applications [8]. For a 
vague concept R, a lower approximation is 
contained of all objects which surely belong to 
the concept R and an upper approximation is 
contained of all objects which possibly belong 
to the concept R. In other words, the lower 
approximation of the concept is the union of 
all elementary concepts which are included in 
it, whereas the upper approximation is the 
union of all elementary concepts which have 
nonempty intersection with the concept [11]. 
Ammar and Khalifa in (2014) applied a new 
method named, separation method for solving 
Rough Interval Multi Objective Transportation 
Problems (RIMOTP), where transportation 
cost, supply and demand are rough intervals 
[1] Also, they discussed the separation 
method as an important tool for the decision 
makers when they are handling various types 
of logistic problems having rough interval 
parameters of transportation problems. Osman 
et al, in (2016) presented a solution approach 
for RIMOTP. The concept of solving 
conventional interval programming combined 
with fuzzy programming is used to build the 
solution approach for RIMOTP [9]. G. 
Mavrotas in (2009) Effective implementation 
of the ε-constraint method in Multi-Objective 
Mathematic programming problems see [20]. 
In this paper, the focus of our study is 
improvement a method to solve fully rough 
multi objective integer linear programming 

(FRMOILP) problems. For determine rough 
value efficient solutions and rough decision 
integer optimal value. Also, we will obtain on 
solutions such as completely satisfactory 
solutions (surely solutions) and rather 
satisfactory solutions (possibly solutions) by 
lower approximation interval and upper 
approximations interval respectively. In our 
problem we assume that all parameters and 
decision variables in the both of constraints 
and the objective functions are rough intervals 
(RIs). We used integer programming because 
many linear programming (LP) problems 
require that the decision variables are integers. 
Also, rough intervals are very important to 
tackle the uncertainty and imprecise data in 
decision making problems. In addition, the 
proposed algorithm enables us to search for 
the optimal solution in the largest range of 
possible solutions range. The rest of the paper 
is organized as follows. In Section 2, some 
basic about the preliminaries of RIs are 
presented and problem formulation and 
solution concept.  In section 3, the weighting 
problem and procedures for the solution 
FRMOILP problems were considered.  In 
section 4 the ε-constraint method was described.   
In addition, we will use slice-sum method 
[12] with the branch and bound technique for 
solving FRMOILP problems. Numerical 
examples for demonstrating the solution 
procedure of the proposed method and the 
conclusion are given. 

2.  Problem Formulation and solution concept 

2.1. Fully Rough Multi objective Integer Linear 
Programming Problems 
 

Let 𝐴 , 𝐵  represent the two sets of 
rough intervals. A rough interval 
multi-objective linear programming 
(FRMOILP) problems, see [17] with 
"k" linear objective functions 
 

 𝑀𝑎𝑥  𝑓 (𝑥) = 𝐶 𝑥 ,      𝑟 = 1,2, … 𝑘, as  
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𝑴𝒂𝒙 𝑓  (𝑥) =                                                           

(  𝑓 (𝑐 , 𝑥 ), 𝑓 (𝑐 , 𝑥 ), … , 𝑓 (𝑐 , 𝑥 ))

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                  

𝑥 ∈ 𝑋 = 𝑥 ∈ ℛ | 𝑔 (𝐴 , 𝑥 ) ≤ 𝐵 , 𝑥 ≥ 0 ⎭
⎪
⎬

⎪
⎫

(1) 

where  

𝐴 = [ 𝑎 ] ∗ ,       𝐵 = (𝑏 , 𝑏 , …  , 𝑏 )   , 𝑥 =

(𝑥 , 𝑥 , … , 𝑥 )  and 𝐶 = (𝑐 , 𝑐 , …  , 𝑐 ), 𝑟 =

1, …  , 𝑠𝑒𝑡 𝑜𝑓 𝑘 , 𝑖 ∈ 𝐼  , 𝑗 ∈ 𝐽 ,   𝐼 = 1, … , 𝑛   ,   𝐽 =

1, … , 𝑚     are rough interval integer parameters 
𝑥 denote a set of decision rough variables, 𝑓  
denote rough objective function. 

 
Definition 1 (Rough efficient solution) [1]: The 
rough vector   𝑥∗ (𝐴∗ , 𝐵∗ )  which satisfies the 
condition in problem (1), is called a rough 
efficient solution of problem (1), if and only if 
there does not exist another 𝑥 (𝐴 , 𝐵 ) ∈ 𝑋   
such that 

𝑓 (𝑐 , 𝑥 ) ≤ 𝑓∗ (𝑐∗ , 𝑥∗ ) 
 

For all r and  𝑓 (𝑥 ) ≠ 𝑓 (𝑥∗ )   for at least one 
r = 1, 2,…,K and  𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 where from (1) we 
have:  

𝐶∗  = [ 𝐶∗ , 𝐶∗  , 𝐶∗   , 𝐶∗ ] 

𝑎∗  = [ 𝑎∗ , 𝑎∗  , 𝑎∗   , 𝑎∗ ] 

𝑏∗  = [ 𝑏∗ , 𝑏∗  , 𝑏∗   , 𝑏∗ ] 

𝑥∗  = [ 𝑥∗ , 𝑥∗  , 𝑥∗   , 𝑥∗ ] 

  r = 1, 2,…, k  ,  I=1,2,...,n  ,  J= 1,2,…,m  

3. The weighting problem   
 

The idea is to associate each objective function 
with a weighting coefficient and minimize the 
weight sum of the objectives. In this way 
multiple objective function are transformed into 
a single objective function. We suppose that the 
weighting coefficient  w  are real numbers such 
that w ≥ 0   for all r =1, 2,…,k . It is also 
usually supposed that the weight is normalized 

that is ∑ w = 1. 

 

To be more exact, the multi objective 
optimized problem is modified into the 
following problem to be called a weighting that 
problem (2) LP (w):  

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆                 𝑤 𝑓 (𝑐 , 𝑥 )                         

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                                 

𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ |  𝐴 𝑥 ≤ 𝐵  , 𝑥 ≥ 0  𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 }

𝑊ℎ𝑒𝑟𝑒 𝑤 ∈ 𝑊 = 𝑤 ∈ ℛ , 𝑤 ≥ 0 𝑎𝑛𝑑 𝑤 = 1
⎭
⎪⎪
⎬

⎪⎪
⎫

(2) 

 
The relationship between the optimal solution 𝑥∗ 
of the weighting problem (2) and the efficient 
solution of problem (1) can be characterized by 
the following theorems [16, 18].  

 
Theorem 1 If  𝑥∗(w∗) ∈ X  is optimal solution 
of the weighting problem (2) for some  w∗ > 0, 
then 𝑥∗ is optimal solution of problem (1). 

 

Theorem 2 If x∗ ∈ X  is an optimal solution of 
problem (1) then there exists w∗ ∈ W such that 

𝑥∗  solves LP (w∗) and if either one of the 
following two conditions holds: 
 (i) w∗ > 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 = 1,2, … , 𝑘, 𝑜𝑟  
(ii) 𝑥∗ is the unique optimal solution for a given 
(𝑤∗). 

 
The weighting problem determines the complete 
set of optimal solution of problem (2) if the 
problem is convex. 

 
3.1.  Procedures for the solution FRMOILP 

problems: 

Step (1): The idea is to associate each objective 
function with a weighting coefficient and 
maximize the weight sum of the objectives: 

𝑀𝑎𝑥    𝑤 (𝑐 𝑥 ) + 𝑤 (𝑐 𝑥 ) + ⋯ +  𝑤 (𝑐 𝑥 )

       𝑆. 𝑡          ∑ 𝑎   𝑥  ≤  𝑏             𝑗 ∈ 𝐽      

𝑤ℎ𝑒𝑟𝑒  𝑥 ≥ 0   𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠   𝑗 𝐽 = {1, … , 𝑚} 

     𝑤 ≥ 0     𝑓𝑜𝑟   𝑟 = 1,2, … , 𝑘   𝑎𝑛𝑑    ∑ 𝑤 = 1

 

⎭
⎪
⎬

⎪
⎫

(3)  

and then will deal with a single objective 
function. 
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Step (2): The general FRMOILP problem after 
the first step to become as a single problem (4). 
 

([𝐼𝐿𝑃 ], [𝐼𝐿𝑃 ]) =  𝑀𝑎𝑥                                          

 𝑤 ([𝑐  , 𝑐 ]: [𝑐 , 𝑐 ])⨂([ 𝑥 , 𝑥 ]: [ 𝑥 , 𝑥 ])

 𝑠. 𝑡                                                                                                     

 ( 𝑎 , 𝑎 : [𝑎  , 𝑎 ])⨂(  𝑥 , 𝑥 : [ 𝑥 , 𝑥 ])

                    ≤  ([𝑏 , 𝑏 ] ∶ [𝑏  , 𝑏 ])

 𝑥 , 𝑥 , 𝑥 , 𝑥 ≥ 0  , 𝑤ℎ𝑒𝑟𝑒 𝑗 ∈ 𝐽   

𝑎𝑛𝑑 𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

(4) 

Where              ([ 𝑐 , 𝑐 ] , [𝑐  , 𝑐 ]) , 

 ([ 𝑎 , 𝑎 ] , [𝑎  , 𝑎 ]) , ([𝑏 , 𝑏 ] , [𝑏  , 𝑏 ]) 

And    𝑥 , 𝑥 ,  𝑥  , 𝑥  (𝐼 = 1, … , 𝑛; 𝐽 = 1, … , 𝑚)  

are rough intervals coefficient and variables of 
the objective function and the constraints.  

Step (3): Find the possibly optimal range or the 
upper approximation interval [UAI] as 
[ILP , ILP ]  By solving integer interval 
linear programming as following:  

 𝐼𝐿𝑃 = 𝑀𝑎𝑥    𝑤 [𝑐 , 𝑐 ]⨂[𝑥 , 𝑥 ]  

 𝑆. 𝑡  𝑎 , 𝑎 ⨂ 𝑥 , 𝑥 ≤ [𝑏 , 𝑏 ]  

𝑥 , 𝑥 ≥ 0  , 𝑤ℎ𝑒𝑟𝑒   𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽  

and  integer variables, (𝐼 = 1, … , 𝑛; 𝐽 = 1, … , 𝑚) .

 

⎭
⎪⎪
⎬

⎪⎪
⎫

(5) 

Step (4): Find the surly optimal range or the 
lower approximation interval [LAI] as 
[ILP , ILP ]by solving the following: 

  𝐼𝐿𝑃 =  𝑀𝑎𝑥    𝑤 𝑐 , 𝑐 ⨂ 𝑥 , 𝑥   

𝑆. 𝑡 𝑎 , 𝑎 ⨂ 𝑥 , 𝑥 ≤ [𝑏 , 𝑏 ]   

 
𝑥 , 𝑥 ≥ 0  , 𝑤ℎ𝑒𝑟𝑒   𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽   

and  integer variables (𝐼 = 1, … , 𝑛; 𝐽 = 1, … , 𝑚). ⎭
⎪⎪
⎬

⎪⎪
⎫

(6) 

Step (5): According to step (3), the possibly 
optimal range of problem (5) by solving two 
classical LPs as follows 

  𝐼𝐿𝑃 : =  𝑀𝑎𝑥     𝑤 𝑐 𝑥

 𝑆. 𝑡       𝑎 𝑥 ≤ 𝑏    

 𝑥 ≥  0  𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽  

𝐽 = 1, … … , 𝑚  , 𝐼 = 1, … … , 𝑛    ⎭
⎪⎪
⎬

⎪⎪
⎫

(7) 

   And 

 𝐼𝐿𝑃 : =   𝑀𝑎𝑥       𝑤 𝑐 𝑥

𝑆. 𝑡    𝑎 𝑥 ≤ 𝑏

 
𝑥 ≥  0  𝑎𝑛𝑑  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽

𝐽 = 1, … … , 𝑚  , 𝐼 = 1, … … , 𝑛 ⎭
⎪⎪
⎬

⎪⎪
⎫

(8) 

Step (6) The surly optimal range of problem 
(6) follows by solving the two classical LPs: 

  𝐼𝐿𝑃 : =   𝑀𝑎𝑥         𝑤 𝑐 𝑥

  𝑆. 𝑡          𝑎 𝑥 ≤ 𝑏    

 𝑥 ≥  0    𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽

𝐽 = 1, … … , 𝑚  , 𝐼 = 1, … … , 𝑛    

 

⎭
⎪⎪
⎬

⎪⎪
⎫

(9) 

And 

  𝐼𝐿𝑃 : =   𝑀𝑎𝑥         𝑤 𝑐 𝑥

𝑆. 𝑡         𝑎 𝑥 ≤ 𝑏

𝑥 ≥  0   𝑎𝑛𝑑  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠   𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽

𝐽 = 1, … … , 𝑚  , 𝐼 = 1, … … , 𝑛

 

⎭
⎪⎪
⎬

⎪⎪
⎫

(10) 

where the rough optimal values (𝑍∗ )  and 

rough integer efficient solutions (𝑥∗ ) will be 

as: 

𝑍∗ = [𝑧∗ , 𝑧∗ ],  𝑧∗ , 𝑧∗   
 

𝑥∗ =  𝑥∗ ,  𝑥∗ ,  𝑥∗ ,  𝑥∗  (𝑗 = 1, … , 𝑛)  
 

In addition, the possible optimal values range 
for problem (5)  are [𝑧∗ , 𝑧∗  ] and the surely 
optimal values range for problem (6) are 
[𝑧∗ , 𝑧∗ ]. Also, the intervals   𝑥∗ , 𝑥∗  jJ  

are the integer completely satisfactory solutions. 
Furthermore, the intervals  𝑥∗ , 𝑥∗   jJ  are 

integer rather satisfactory solutions. 
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Definition 2 Consider all of the corresponding 
FRMOILP problems and LP of problem (4). 

(a) The interval[𝐼𝐿𝑃 , 𝐼𝐿𝑃 ]([𝐼𝐿𝑃 , 𝐼𝐿𝑃 ]) 
is called the surely (possibly) optimal 
range symbolized   [𝐼𝐿𝑃 ] ([𝐼𝐿𝑃 ])  of 
problem (4), if the optimal range of each 
(ILPFRI) is a superset (subset) of 
[𝐼𝐿𝑃 , 𝐼𝐿𝑃 ]([𝐼𝐿𝑃 , 𝐼𝐿𝑃 ]). 

(b) Let [𝐼𝐿𝑃 , 𝐼𝐿𝑃 ]([𝐼𝐿𝑃 , 𝐼𝐿𝑃 ])  be 
surely optimal (possibly) optimal range of 
the problem (4). Then the rough interval 
([𝐼𝐿𝑃 , 𝐼𝐿𝑃 ], [𝐼𝐿𝑃 , 𝐼𝐿𝑃 ]) is called 
the rough optimal range of problem (4), 
also any point, optimal value belongs to 
[𝐼𝐿𝑃 , 𝐼𝐿𝑃 ], ([𝐼𝐿𝑃 , 𝐼𝐿𝑃 ]) is called a 
completely (rather) satisfactory solution 
of the problem (4). 

(c) A solution 𝑥∗  is surely-feasible, iff it 
belongs to the lower approximation of the 
feasible set. 

(d) A solution 𝑥∗  is possibly -feasible, iff it 
belongs to the upper approximation of the 
feasible set. 

(e) A solution 𝑥∗ is surely-not feasible, iff it 
does not belong to the upper 
approximation of the feasible set [2,7]. 

Now, the establish of the relation between 
optimal solutions of the integer linear 
programming problem with fully rough 
intervals for problem (4) and four problems 
ILPUU, ILPLU,  ILPLL and  ILPUL  the problems 
(7), (8), (9) and (10) respectively. The 
established relation is used in the proposed 
method, namely, slice-sum method. 

Theorem 3 [14]   
If the set { 𝑥 , for all  𝑗 ∈ 𝐽}  is an optimal 

solution for the (𝐼𝐿𝑃 ) or (7) problem of the 
problem  (4) with the maximum optimal value 
for (𝑍 ) ,  the set { 𝑥 , for all  𝑗 ∈ 𝐽}  is an 

optimal solution for the (𝐼𝐿𝑃 ) or (10) 
problem of the problem (4) with the maximum 
optimal value for (𝑍 ),  the set {𝑥 , for all  𝑗 ∈

𝐽} is an optimal solution for the (𝐼𝐿𝑃 ) or (9) 

problem of the problem (4) with the maximum 
optimal value for (𝑍 ), the set {𝑥 , for all  𝑗 ∈

𝐽} is an optimal solution for the (𝐼𝐿𝑃 ) or (8) 
problem of the problem (4) with the maximum 
optimal value for (𝑍 ), then the set of rough 
integer intervals {  𝑥 ,  𝑥 ,  𝑥 ,  𝑥 , for all  𝑗 ∈ 𝐽} 
is an optimal solution for the problem (4) with 
maximum optimal values [𝑧 , 𝑧 ],  𝑧 , 𝑧   
provided 𝑥 ≤ 𝑥 ≤ 𝑥 ≤ 𝑥 , for all  𝑗 ∈ 𝐽. 
 

Proof: Since  {𝑥 , for all  𝑗 ∈ 𝐽}, {𝑥 , for all  𝑗 ∈

𝐽} , {𝑥 , for all  𝑗 ∈ 𝐽} , {𝑥 , for all  𝑗 ∈ 𝐽}  are 
optimal solutions for the problems 
  𝐼𝐿𝑃 ,  𝐼𝐿𝑃 , 𝐼𝐿𝑃   and   𝐼𝐿𝑃 , respectively 
and  𝑥 ≤ 𝑥 ≤ 𝑥 ≤ 𝑥 , for all  𝑗 ∈ 𝐽,  then 
we can conclude that the set of rough integer 
intervals {  𝑥 ,  𝑥 ,  𝑥 ,  𝑥 , for all  𝑗 ∈ 𝐽} is a 
feasible solution to the problem (4). 
 

Let  {  𝑥∗ ,  𝑥∗ ,  𝑥∗ ,  𝑥∗ , for all  𝑗 ∈

𝐽} be a feasible solution to the problem (4). 
 

Therefore  { 𝑥∗ , for all  𝑗 ∈ 𝐽}, {𝑥∗ , for all  𝑗 ∈

𝐽} ,    {𝑥∗ , for all 𝑗 ∈ 𝐽} ,    {𝑥∗ , for all  𝑗 ∈ 𝐽}   

are feasible solutions to the problems 𝐼𝐿𝑃 , 
𝐼𝐿𝑃 , 𝐼𝐿𝑃  𝑎𝑛𝑑  𝐼𝐿𝑃 , respectively. 

 Since {𝑥 , for all  𝑗 ∈ 𝐽}, {𝑥 , for all  𝑗 ∈ 𝐽} ,

{𝑥 , for all  𝑗 ∈ 𝐽}, {𝑥 , for all  𝑗 ∈ 𝐽}  are 

feasible solutions to the problems  
𝐼𝐿𝑃 , 𝐼𝐿𝑃 , 𝐼𝐿𝑃  𝑎𝑛𝑑  𝐼𝐿𝑃 , respectively. 
We have: 

𝑍    = 𝑐 𝑥∗ ≥ 𝑐 𝑥 , 

  𝑍 = 𝑐 𝑥∗ ≥ 𝑐 𝑥  , 

𝑍 = 𝑐 𝑥∗ ≥ 𝑐 𝑥 , 

𝑎𝑛𝑑    𝑍 = 𝑐 𝑥∗ ≥ 𝑐 𝑥 . 
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This implies that  [𝑍 , 𝑍 ]: 𝑍 , 𝑍  = 

( 𝑐 , 𝑐 : [𝑐 , 𝑐 ]) ⨂ (  𝑥 , 𝑥 : [ 𝑥 , 𝑥 ]) 

And 

 𝑐 , 𝑐 :  𝑐  , 𝑐 ⊗

𝒎

𝒋 𝟏

 𝑥∗ , 𝑥∗ :  𝑥∗  , 𝑥∗  

≥  𝑐 , 𝑐 :  𝑐  , 𝑐 ⊗

𝒎

𝒋 𝟏

 𝑥 , 𝑥 :  𝑥  , 𝑥  

Therefore, the set of rough integer intervals 

{  𝑥∗ ,  𝑥∗ :  𝑥∗ ,  𝑥∗ , for all  𝑗 ∈ 𝐽}    is 

optimal solution for the problem (4) with maximum 

optimal values [𝑍 , 𝑍 ],  𝑍 , 𝑍  . Hence, 

the theorem is proved [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): Flowchart of the proposed approach for solving 

Fully rough multi objective integer linear programming 
problems.  

To demonstrate the solution method let us 
consider a numerical example of the following 
fully rough Multi Objective integer linear 

programming problem, where we will use 
''WinQSB'' program to solve it.   
 

Example 1  

𝑀𝑎𝑥 

⎝

⎜
⎛

([2,3]: [1,4])⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ]) ⊕

([3,4]: [2,5])⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ]) 
,

([5,6]: [4,8])⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])⨁

([6,8]: [4,10])⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])  ⎠

⎟
⎞

 

Subject to 

([ 3,3.5]: [2.5,5])⨂([ 𝑥 , 𝑥 ]: [𝑥 , 𝑥 ])⨁([2.5,3][2,4])

⨂( [ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ]) ≤ ([600,700], [500,800])   
 

([2.5,3]: [2,4]) ⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])⨁([3,3]: [1.5,4])

⨂( [ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ]  ) ≤  ([450,550]: [400,600])
 

([1,1]: [0.5,1.5] ⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])⨁([3.5,4]: [3,4)

⨂( [ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ]  ) ≤  ([250,350], [100,400]) 
   

   
𝑥 , 𝑥 , 𝑥 , 𝑥 ≥ 0  , 𝑤ℎ𝑒𝑟𝑒   𝑖 = 1,2      

𝑎𝑛𝑑 𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
       

  Convert the FRMOILP problem to single 
objective by weighting method 𝑓(𝑥) = 𝑤 𝑓 +

𝑤 𝑓   where  𝑤 = 𝑤 = 0.5  as follows: 

                           

𝑀𝑎𝑥

⎩
⎪
⎨

⎪
⎧0.5 

([2,3]: [1,4])⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])⨁

([3,4]: [2,5])⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])  
⨁

0.5 
([5,6]: [4,8])⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])⨁

([6,8]: [4,10])⨂([ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])  ⎭
⎪
⎬

⎪
⎫

 

where the single objective function is 

𝑀𝑎𝑥 
([3.5,4.5], [2.5,6]) ⨂( [ 𝑥 , 𝑥 ], [ 𝑥  , 𝑥 ])

⨁([4.5,6], [3,7.5] )⨂( [ 𝑥 , 𝑥 ], [ 𝑥  , 𝑥 ])  
                               

To solve Example 1 we have to solve two 
integer ILP problems with upper approximation 
interval (UAI) and lower approximation 
interval (LAI) [ILP , ILP ] as follows: 

I𝐿𝑃 =   [𝐿𝑃 , 𝐿𝑃 ]  = 

𝑀𝑎𝑥 [2.5,6] ⨂ [ 𝑥  , 𝑥 ] ⨁  [3,7.5]⨂[ 𝑥  , 𝑥 ] 

Subject to 

[2.5,5] ⨂ [ 𝑥  , 𝑥 ] ⨁ [2,4]⨂ [ 𝑥  , 𝑥 ]   

≤ [500,800] 

Solution for 

Problem Formulation  
Fully Rough Multi-Objective Integer Linear 

Programming Problems  (Problem 4) 

 

 

 LAIILP
(Problem 6) 

 

 UAIILP
(Problem 5) 

 LLILP
(Problem 9) 

 LUILP
(Problem8) 

 ULILP
(Problem 10) 

 UUILP
(Problem 7) 

 

Rough value efficient solutions and decision rough integer 
variables 
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[2,4]⨂[ 𝑥  , 𝑥 ] ⨁ [1.5,4]⨂[ 𝑥  , 𝑥 ] 

                                          ≤ [400,600] 

[0.5,1.5]⨂[ 𝑥 , 𝑥 ]⨁[3,4]⨂[ 𝑥  , 𝑥 ] 

 ≤ [100,400] 

𝑥 , 𝑥 ≥ 0  , 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2  , 

𝑖 = 1,2  𝑎𝑛𝑑  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
 

  [𝐿𝑃 , 𝐿𝑃 ] = 𝐼𝐿𝑃 =  

𝑀𝑎𝑥 [3.5,4.5]⨂[ 𝑥 , 𝑥 ]⨁  [4.5,6]⨂[ 𝑥 , 𝑥 ] 

Subject to              

[3,3.5]⨂ [ 𝑥 , 𝑥 ]⨁  [2.5,3] ⨂[ 𝑥 , 𝑥 ] 

≤ [600,700] 

[2.5,3] ⨂[ 𝑥 , 𝑥 ] ⨁ [3,3] ⨂[ 𝑥 , 𝑥 ] 

≤ [450,550] 

[1,1] ⨂[ 𝑥 , 𝑥 ] ⨁  [3.5,4] ⨂[ 𝑥 , 𝑥 ] 

≤ [250,350] 

𝑥 , 𝑥 ≥ 0  , where 𝑗 = 1, 2  ; 

𝑖 = 1, 2  and  integer variables 
 

In the ILPFI Problem (ILP ) is transformed 
to LP problems ILP  and ILP  , and in the 

ILPFI Problem (ILP ) is transformed to LP 
problems ILP  and ILP  as following: 

𝐼𝐿𝑃 ∶=  max 6𝑥 + 7.5𝑥  

S.t      5𝑥 + 4𝑥 ≤ 800 

           4𝑥 + 4𝑥 ≤ 600 

        1.5𝑥 + 4𝑥 ≤ 400 

           𝑥 ≥ 0,   𝑗 = 1,2 

              𝑎𝑛𝑑 𝑟𝑜𝑢𝑔 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑠, 

𝐼𝐿𝑃 ∶=  max     4.5𝑥 + 6𝑥  

                     S.t      3.5𝑥 + 3𝑥 ≤ 700 

                                3𝑥 + 3𝑥 ≤ 550   

                                    1𝑥 + 4𝑥 ≤ 350 

                       𝑥 ≤ 𝑥  , 𝑥 ≥ 0,   𝑗 = 1,2    

𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑠. 𝐴𝑛𝑑 

𝐼𝐿𝑃 ∶=  max      3.5𝑥 + 4.5𝑥  

                          S.t     3𝑥 + 2.5𝑥 ≤ 600 

                                2.5𝑥 + 3𝑥 ≤ 450 

                                  𝑥 + 3.5𝑥 ≤ 250 

                  𝑥 ≤ 𝑥  , 𝑥 ≥ 0,   𝑗 = 1,2 

               𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑠. 𝐴𝑛𝑑 
 

𝐼𝐿𝑃 ∶=  max  2.5𝑥 + 3𝑥  

           S.t    2.5𝑥 + 2𝑥 +≤ 500 

 2𝑥 + 1.5𝑥 ≤ 400 

0.5𝑥 + 3𝑥 ≤ 100 

𝑥 ≤ 𝑥  , 𝑥 ≥ 0,   𝑗 = 1,2 

𝑎𝑛𝑑 𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑠 

We used ''WinQSB'' program to find efficient 
values and efficient integer solutions for the 
UAI and the LAI for example (1), also, we will 
use apply branch and bound algorithm for 
integer programming, as following results: 

    𝐼𝐿𝑃  = 1005 ,   𝑤ℎ𝑒𝑟𝑒  𝑥 = 80  , 𝑥 = 70 

    𝐼𝐿𝑃 = 762 ,     𝑤ℎ𝑒𝑟𝑒  𝑥 = 80  ,     𝑥 = 67 

       𝐼𝐿𝑃 = 550    , 𝑤ℎ𝑒𝑟𝑒  𝑥 = 80  ,      𝑥 = 48 

       𝐼𝐿𝑃 = 260   ,   𝑤ℎ𝑒𝑟𝑒  𝑥 = 80    ,    𝑥 = 20 

here the rough efficient values range solutions for 

𝑍∗  = ([ILP ], [ILP ]) = [550, 762] ([260,1005]) 

The integer rough optimal solutions are 

  𝑥∗ = ([80, 80], [80,80]), 𝑥∗ = ([48,67], [20,70]). 

And the possibly optimal values range solutions for 

  ILP  are  [ILP , ILP ] = [260,1006 ] . 
 

Moreover, the surely optimal values range solutions 
 

for  ILP  are [ILP , ILP ] = [ 550,760 ].   

In addition, the integer completely satisfactory 

for     [𝑥∗ , 𝑥∗ ] =  [80,80], [𝑥∗ , 𝑥∗ ] = [48,67] 

and the integer rather satisfactory solution for 

[𝑥∗ , 𝑥∗ ] = [80,80], [𝑥∗ , 𝑥∗ ] = [20,70]. 



 

8 El-Saeed Ammar  

 
4. The 𝒔𝒕𝒉 Objective ε-constraint problem 

𝐋𝐏𝐑(ε) 
The ε-constraint method for characterizing 
Pareto optimal solution is to solve the 
following constrained problem by taking one 
objective function as the objective function and 
letting all the other objective functions be 
inequality constraints LP (ε) [16, 18]. 
 

Max  𝑓 (𝑐 , 𝑥 )                                                  
Subject to                                                          

 𝑓 (𝑐 , 𝑥 ) ≤ ε ,    r = 1, … , k, s = 1, … , k    r ≠ s

X = x ∈ R | 𝑔 (𝑐 , 𝑥 ) ≤ b , 𝑥 ≥ 0, j = 1, … , m ⎭
⎪
⎬

⎪
⎫

(11) 

 

where ε = (ε , … , ε , ε , … , ε ) For a given 

point 𝑥∗ , we shall use the symbol LP (ε∗) to 
present the problem LP (ε) , where ε = ε∗ =

𝑥∗ (𝑐∗ , 𝑎∗ , 𝑏∗ )  , r ≠ s and x = (x , x , … , x )  
are integers and an dimensional vector of 
decision variables. 
 

Theorem 4 [16, 18] If  x∗ ∈ X   is unique 
optimal solution to the ε-constraint problem 
IL (ε) for some   ε , r = 1, … , k, ≠ s, then x∗ is 
a pareto optimal solution to problem (1). 
 

Theorem 5 [16, 18] If 𝑥∗ is a Pareto optimal 
solution of problem (1), then 𝑥∗ is an optimal 
solution of the constrained problem  

LP (ε) for some ε  , r = 1, … , k , r ≠ S . 
 

To demonstrate the solution method LP (ε) let 
us consider a numerical example of the 
following fully rough interval multi objective 
integer linear programming problem. 
 

Example (2): Consider the following fully 
rough multi objective linear programming 
problem: 
 

𝑀𝑎𝑥

⎝

⎜
⎛

([0.5,1.5]: [0,2])⨂([ 𝑥 , 𝑥 ]: [ 𝑥 , 𝑥 ])⨁

([1.5,2.5]: [1,3])⨂([ 𝑥 , 𝑥 ]: [ 𝑥 , 𝑥 ]) 
,

([2.5,3.5]: [2,4])⨂([ 𝑥 , 𝑥 ]: [ 𝑥 , 𝑥 ])⨁

([1.5,2.5]: [1,3])⨂([ 𝑥 , 𝑥 ]: [ 𝑥 , 𝑥 ])  ⎠

⎟
⎞

 

Subject to 
 

 ([ 1.5,2.5]: [1,3]) ⨂( [ 𝑥 , 𝑥 ], [ 𝑥 , 𝑥 ])⨁([5.5,6.5],

[5,7])⨂([ 𝑥 , 𝑥 ][ 𝑥 , 𝑥 ]) ≤ ([200,250][150,300])
 

 
 ([7.5,8.5]: [7,9]) ⨂( [ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])⨁([5.5,6.5],

[5,7])⨂([ 𝑥 , 𝑥 ]: [ 𝑥 , 𝑥 ]) ≤ ([350,450]: [300,500])
 

 
  ([2.5,3.5]: [2,4] ⨂( [ 𝑥 , 𝑥 ]: [ 𝑥  , 𝑥 ])⨁([0.5,1.5],

[0,2])⨂([ 𝑥 , 𝑥 ]: [ 𝑥 , 𝑥 ]) ≤ [240,280]: [200,300]
 

 

([2.5,3.5], [2,4])⨂([ 𝑥 , 𝑥 ], [ 𝑥 , 𝑥 ])⨁([1.5,2.5]

[1,3])⨂([ 𝑥 , 𝑥 ], [ 𝑥  , 𝑥 ] ≤ ([ 𝜀 , 𝜀 ], [ 𝜀 , 𝜀 ]
 

 

   
𝑥 , 𝑥 , 𝑥 , 𝑥 ≥ 0  , 𝑤ℎ𝑒𝑟𝑒   𝑖 = 1,2      

𝑎𝑛𝑑 𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
 

To solve it we have to solve four multi-
objective integer crisp linear programming 
problems as with an example (2). Moreover, in 
order to properly apply the ε-constraint method 
we must have the range of every objective 
function, at least for the k -1 objective function 
that will be used as constraints [19,20]. The 
calculation of the range of ε illustrative in table 
(1) and (2) as follows 
 
𝐼𝐿𝑃 ∶=  Max 2𝑥 + 3𝑥  

𝐼𝐿𝑃 ∶=  Max 4𝑥 + 3𝑥  

                      S.t.      3𝑥 + 7𝑥 ≤ 300 

                                  9𝑥 + 7𝑥 ≤ 500 

                               4𝑥 + 2𝑥 ≤ 300 

                                  𝑥 ≥ 0,   𝑗 = 1,2 

                    𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑠. 𝐴𝑛𝑑 
 

  𝐼𝐿𝑃 ∶=  Max       𝑥  

  𝐼𝐿𝑃 ∶=  Max  2𝑥 + 𝑥  

                  S.t     𝑥 + 5𝑥 +≤ 150 

                            7𝑥 + 5𝑥 ≤ 300 

                             2𝑥            ≤ 200 

              𝑥 ≤ 𝑥  , 𝑥 ≥ 0,   𝑗 = 1,2 

            𝑎𝑛𝑑 𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑠. 
 

Table (1): To determine the parameters  𝛆𝟐
𝐋𝐔𝒂𝒏𝒅 𝛆𝟐

𝐔𝐔. 

(𝐱𝟏, 𝐱𝟐) 𝐱𝟏
𝐋𝐔 + 𝐱𝟐

𝐋𝐔 (𝐱𝟏, 𝐱𝟐) 𝟒𝐱𝟏
𝐔𝐔 + 𝟑𝐱𝟐

𝐔𝐔 

 𝐈𝐋𝐏𝟏
𝐋𝐔 

(𝟎 , 𝟑𝟎) 

30  𝐈𝐋𝐏𝟏
𝐔𝐔 

(𝟑𝟐 , 𝟐𝟗) 

215 
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 𝐈𝐋𝐏𝟐
𝐋𝐔 

(𝟒𝟐, 𝟏) 

85  𝐈𝐋𝐏𝟏
𝐔𝐔 

(𝟓𝟒 , 𝟐) 

222 

Max 85 Max 222 

Min 30 Min 215 

ε 𝟑𝟎 ≤ 𝛆𝟐
𝐋𝐔

≤ 𝟖𝟓 
ε 𝟐𝟏𝟓 ≤ 𝛆𝟐

𝐔𝐔

≤ 𝟐𝟐𝟐 

 

    𝐼𝐿𝑃 ∶=  Max 1.5𝑥 + 2.5𝑥  

   𝐼𝐿𝑃 ∶=  Max 3.5𝑥 + 2.5𝑥  

                  S.t       2.5𝑥 + 6.5𝑥 ≤ 250 

                           8.5𝑥 + 6.5𝑥 ≤ 450 

                           3.5𝑥 + 1.5𝑥 ≤ 280 

                𝑥 ≤ 𝑥  , 𝑥 ≥ 0,   𝑗 = 1,2 

                𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. And 

𝐼𝐿𝑃 ∶=  Max 0.5𝑥 + 1.5𝑥  

𝐼𝐿𝑃 ∶=  Max 2.5𝑥 + 1.5𝑥  

                 S.t      1.5𝑥 + 5.5𝑥 ≤ 200 

                         7.5𝑥 + 5.5𝑥 ≤ 350 

                         2.5𝑥 + 0.5𝑥 ≤ 240 

              𝑥 ≤ 𝑥  , 𝑥 ≥ 0,   𝑗 = 1,2 

          𝑎𝑛𝑑 𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

 

Table (2): To determine the parameters 𝛆𝟐
𝐋𝐋𝒂𝒏𝒅 𝛆𝟐

𝐔𝐋.   

(𝐱𝟏, 𝐱𝟐) 𝟐. 𝟓𝐱𝟏
𝐋𝐋 + 𝟏. 𝟓𝐱𝟐

𝐋𝐋 (𝐱𝟏, 𝐱𝟐) 𝟑. 𝟓𝐱𝟏
𝐔𝐋 + 𝟐. 𝟓𝐱𝟐

𝐔𝐋 

ILP  

(3 , 3) 

102.5 

 

ILP  

(32 , 26) 

177 

 ILP  

(3, 3) 

115.5 ILP  

(52 , 1) 

184.5 

Max 115.5 Max 184.5 

Min 102.5 Min 177 

ε 𝟏𝟎𝟐. 𝟓 ≤ 𝛆𝟐
𝐋𝐋

≤ 𝟏𝟏𝟓. 𝟓 
ε 𝟏𝟕𝟕 ≤ 𝛆𝟐

𝐔𝐋

≤ 𝟏𝟖𝟒. 𝟓 

 

𝑳𝒆𝒕     𝜀 = 85   ,      𝜀 = 220    

𝐼𝐿𝑃 ∶=  𝑀𝑎𝑥 2𝑥 + 3𝑥  

𝒔. 𝒕     3𝑥 + 7𝑥 ≤ 300        

9𝑥 + 7𝑥 ≤ 500 

4𝑥 + 2𝑥 ≤ 300 

4𝑥 + 3𝑥 ≤ 220 

𝑥 ≥ 0,   𝑗 = 1,2 

                𝑟𝑜𝑢𝑔𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. And 

     𝐼𝐿𝑃 ∶=  Max          𝑥  

                           S.t      𝑥 + 5𝑥 +≤ 150 

                                     7𝑥 + 5𝑥 ≤ 300 

                                  2𝑥 +            ≤ 200 

                                     2𝑥 + 𝑥 ≤ 85 

                   𝑥 ≤ 𝑥  , 𝑥 ≥ 0,   𝑗 = 1,2 

                  𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 𝐴nd 

𝑳𝒆𝒕     𝜀 = 102   ,      𝜀 = 180    

𝐼𝐿𝑃 ∶=   𝑀𝑎𝑥    1.5𝑥 + 2.5𝑥  

𝑠. 𝑡.      2.5𝑥 + 6.5𝑥 ≤ 250          

8.5𝑥 + 6.5𝑥 ≤ 450 

3.5𝑥 + 1.5𝑥 ≤ 280 

              3.5𝑥 + 2.5𝑥 ≤ 180 

         𝑥 ≤ 𝑥  , 𝑥 ≥ 0,   𝑗 = 1,2 

         𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. And 

𝐼𝐿𝑃 ∶=  Max   0.5𝑥 + 1.5𝑥  

                𝑠. 𝑡    1.5𝑥 + 5.5𝑥 ≤ 200 

                       7.5𝑥 + 5.5𝑥 ≤ 350 

                        2.5𝑥 + 0.5𝑥 ≤ 240 

                        2.5𝑥 + 1.5𝑥 ≤ 102 

               𝑥 ≤ 𝑥  , 𝑥 ≥ 0,   𝑗 = 1,2 

            𝑎𝑛𝑑 𝑟𝑜𝑢𝑔ℎ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 

We used ''WinQSB'' program to find efficient 
value solutions and efficient integer solutions 
for the UAI and the LAI for example (2).  Also, 
we used to apply branch and bound algorithm 
for integer programming, as following results: 
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      𝐼𝐿𝑃  = 151  ,   𝑤ℎ𝑒𝑟𝑒  𝑥 = 32  , 𝑥 = 29 

      𝐼𝐿𝑃 = 113  ,   𝑤ℎ𝑒𝑟𝑒  𝑥 = 32  , 𝑥 = 26 

     𝐼𝐿𝑃 = 51.5   , 𝑤ℎ𝑒𝑟𝑒  𝑥 = 25   , 𝑥 = 26 

     𝐼𝐿𝑃 = 26     ,   𝑤ℎ𝑒𝑟𝑒  𝑥 = 0   ,   𝑥 = 26 

Where the rough efficient values range solutions for 

𝑍∗ = ([ILP ], [ILP ]) = ([ 51.5 , 113], [26 , 151]). 
 

The integer rough optimal solutions are 
  𝑥∗ = ([25,32], [0,32]),   𝑥∗ = ([26 ,26], [26 , 29]) 

And the possibly optimal values range solutions for 

𝐼𝐿𝑃  are [ILP , ILP ] = [26 , 151 ]  . 
Moreover, the surely optimal values range solutions 
 

for ILP  are [ILP , ILP ] = [ 51.5,113 ].  
In addition, the integer completely satisfactory for 

[𝑥∗ , 𝑥∗ ] = [25,32], [𝑥∗ , 𝑥∗ ] = [26,26] 
and the integer rather satisfactory solution for 
[𝑥∗ , 𝑥∗ ] = [0,32], [𝑥∗ , 𝑥∗ ] = [26,29]. 
 

Advantages and differences 
1. For linear programming problems, the 

weighting strategy is applied to the 
pristine feasible region and results in a 
corner solution (extreme points), hence 
producing only efficient extreme 
solutions. On the opposite, the ε- 
Constraint method alters the pristine 
feasible region and is able to engender 
non-extreme efficient solutions. As a 
conclusion, with the weighting strategy 
we may spend a plethora of runs that 
are redundant in the sense that there can 
be an abundance of amalgamations of 
weights that result in the same efficient 
extreme solution. On the other hand, 
with the ε -constraint we can exploit 
virtually every run to engender a 
different efficient solution, thus 
obtaining a richer representation of the 
efficient set. 

2. The weighting method cannot engender 
unsupported efficient solutions in multi-
objective integer and commixed integer 
programming quandaries, whereas the ε 

-constraint method does not 
endure from this trap [19, 20]. 

3. In the weighting strategy, the scaling of 
the target capacities impacts the 
acquired outcomes. Subsequently, we 
have to scale the target capacities to a 
typical scale before shaping the 
weighted entirety. In the ε - constraint 
technique this is not essential.  
 

With the additional favorable position of 
the ε-imperative strategy is that we can 
control the quantity of the created proficient 
arrangements by legitimately altering the 
quantity of matrix focuses in every last one 
of the target work ranges. This is not so 
natural with the weighting technique. 
 

Conclusion 
 In the presented paper a solution algorithm has 
been proposed to solve fully rough multi-
objective integer linear programming problems 
by two methods and found rough value 
efficient solutions and decision rough integer 
variables, .In the first phase of the solution 
approach and to avoid the complexity of this 
problem we began by converting the rough 
nature of this problem into an equivalent crisp 
problem. In the second phase we used some of 
the concepts to determine and choose values of 
the weights and ε- constraint technique. We 
obtained rough efficient values and integer 
rough efficient solutions. Also, the used rough 
intervals are very important to tackle the 
uncertainty in decision making problems. In 
addition, we obtained on N suggested solutions 
and enabling the decision maker from making 
the best decision. Furthermore, we got on 
approximations interval respectively. Also, we 
posted the advantages and solutions such as 
completely satisfactory solutions (surely 
solutions) and rather satisfactory solutions 
(possibly solutions) by lower approximation 
interval and upper differences between the 
weighting method and the ε-constraint 
technique. We believe that this paper is an 
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attempt to establish underlying results which 
hopefully help others to answer some of these 
questions.  
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