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     In this study, a new method to estimate the parameters for a quadratic 
regression model is introduced by using Kuhn-Tucker conditions. 
Kuhn-Tucker conditions provide the minimizing error of the estimated 
parameters for a quadratic regression. This method can be used for any 
data set of a quadratic regression, and we discuss the test for correct 
specification of disturbances mainly because of their ability to detect 
the irregularities in the regressor specification. 
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1. Introduction 

         A quadratic regression refers to linear 
regression with two or more 

predictors (x
1
,x

2
,...,x

n
) . When multiple 

predictors are used, the regression line cannot 
be visualized in two-dimensional space. 
However, the line can be computed simply by 
expanding the equation for single-predictor 
linear regression to include the parameters for 
each of the predictors. 

     Although linearity is still the primary model 
in applications, there has been an increasing in 

examples of data that are nonlinear, and in 
particular, where a quadratic fit may be more 
appropriate. The method of Theil [9] can 
readily be modified for the quadratic case.  

     Necessary and sufficient conditions for 
noninferiority due to Kuhn and Tucker are 
analogous to the classic Kuhn-Tucker 
conditions for optimality of a scalar 
optimization problem. The Kuhn-Tucker 
conditions for noninferiority (KTCN) will be 
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defined in the same spirit as in Cohon and 
Marks [3] and Cohon [2].  

     A quadratic regression models play an 
important role in many fields. The object of this 
paper is to estimate the parameters for a 
quadratic regression model by using Kuhn-
Tucker conditions. Kuhn-Tucker conditions 
provide the minimize error of the estimated 
parameters for a quadratic regression. 

     The Durbin–Watson statistic is a statistical 
test used to detect the presence of 
autocorrelation in the residuals (prediction 
errors) from a regression analysis [9, 10]. 
Durbin and Watson (1950, 1951) applied this 
statistic to the residuals from the regression 
line, and developed bounds tests for the null 
hypothesis that the errors are serially 
uncorrelated against the alternative that they 
follow a first order autoregressive process. 

     A quadratic regression models which 
studied by using Kuhn-Tucker conditions can 
take the following form: 

       y
i
= b

1
x

i
+ b

2
x

i

2 + e
i

,i = 1,2,...,n      (1.1) 

where y
i
, x

i
 and (b

1
,b

2
)  are vectors of 

endogenous variables, exogenous variables, 
and regression parameters to be estimated, 

respectively, and  e
i

 is a random error, 

assumed to be normally distributed, 
independently of the errors for other 
observations, with expectation 0 and variance 

s 2 : e
i
»N (0,s 2 ) . 

     The purpose of this article is to develop a 
new procedure that can always produce 
regression curve estimators for the quadratic 
model (1.1) by using the Kuhn-Tucker 
conditions.  

 

2. Problem Formulation   

     Equation (1.1) can be written in the 

following form: 

minQ =å
i=1

n

e i
2 ,i = 1,...,n

s.t.

å
i=1

n

[y
i
- (b

1
x

i
+ b

2
x

i
2]2 £ Q,

x
i
³ 0

             (2.1) 

Definition1 [1]: 

Let f
i
: Rn ® R, g

i
: Rn ® R and S = x ÎRn : g

i
£ 0{ }, a 

feasible solution x ÎS  is said to be satisfy 
KTCN for vector optimization problem if: 

1. all f
i
 and g

i
 are differentiable and 

S = f  ; and  

2. there exists u
i
³ 0, i = 1,...,n , with 

strict inequality holding for at least one 
 and v

i
³ 0, i = 1,...,n , such that   

gi (x) £ 0, vi gi (x) = 0 (i = 1,...,n), 

     and 

i=1

n

åui Ñfi (x)+
i=1

n

åvi Ñgi (x) = 0. 

The Kukn-Tucker conditions for this problem 
take the form (see [6, 7]):         

u
i
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i
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v
i
x

i
= 0,  (2.2)                                                                                                                        

i=1

n

åui = 1                                                        (2.3) 

i=1

n

å[yi - (b̂1xi + b̂2xi
2 )]2 £ 0,                         (2.4)   

-
i=1

n

åvi xi = 0,                                                (2.5) 

xi ³ 0,                                                 (2.6) 
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ui [yi - (b̂1xi + b̂2xi
2 )]2

i=1

n

åé
ë
ê

ù

û
ú = 0,

                       
(2.7) 

ui ³ 0, i = 1,...,n                                         (2.8) 

v
i
³ 0                                                           (2.9)   

The determination of  b̂1
,b̂

2   is depending on 

the obtained values of u
i
 which can be 

determined as follow: 

If u
i
> 0,v

i
= 0, we have: 
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nx
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3. Stability set of this problem  

     Given certain (b̂
1
,b̂

2
)  with corresponding 

optimal solution e
i
 ; then the stability set of the 

first kind of problem (2.1) corresponding to this 

optimal solution, denoted by S(e
i
) , is defined 

by S(e
i
) = {(b̂

1
,b̂

2
)ÎR | e

i
 is an optimal 

solution of (2.1)} (see [6, 7] ). 

     For a certain (b̂
1
,b̂

2
)  with a corresponding 

to optimal solution e
i

; we have from the 

stability of (2.1) there exist 

(b̂
1
,b̂

2
)ÎR, u

i
³ 0, i = 1,...,n , such that the 

Kuhn-Tucker conditions of problem (2.1) takes 
the form (2.2)-(2.9), the determine of the 

stability set of the first kind S(e
i
)  depends only 

on whether any of the variables u
i
, i = 1,...,n  

and any of the variables v,w  which solves  the 

Equations (2.2), (2.3), (2.8), (2.9) are positive 
or zero. 

     Let ui = 0, iÎ I Ì{1,...,n}, ui > 0, iÏI  solves 

(2.1), (2.2) and (2.7), then in order to satisfy the 
other Kuhn-Tucker conditions (2.3) and (2.6), 
we must have   

e
i
= y

i
- (b̂

1
x

i
+ b̂

2
x

i
2 ), i Ï I;

ei ³ yi - (b̂1xi + b̂2xi
2 ), i Î I.

 

Let  

D ={I | u
i
= 0,iÎ I;u

i
> 0, iÏI  solve (2.1), 

(2.2), (2.7) and (2.8)} 

and  

S
I
(e

i
) = {(b̂

1
,b̂

2
)ÎR | e

i
= y

i
- (b̂

1
x

i
+ b̂

2
x

i
2 ), i ÏI ;

ei ³ yi - (b̂1xi + b̂2xi
2 ), i ÎI}.

 

Then, it is clear that 

S(ei ) = ∪
IÎD

SI (ei ) 

 

4. Testing Disturbances 

     In this study we examine whether the 
disturbances in the regression model (2.1) are 
well behaved or not. As known, this can also be 
viewed as a test for the higher moments of the 
dependent variable conform to the assumptions 
of the model. 

     Testing for autocorrelation may be the most 
intensely researched statistical problems in all 
of econometrics. Despite heavy competitions, 
the most common procedure is still the Durbin–
Watson test. It is based on the assumption that 

the e
i
 in (2.1) follows a stationary 

autoregressive process. 

     The null hypothesis of no serial correlation 

is therefore equivalent to H
0
: r = 0 . The 

statistic test in the multivariate case as the 
Durbin–Watson test is  
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          D =
ei - ei-1( )2

i=2

n

å

e
i
2

i=1

n

å
                         (4.1) 

where e
i
= y

i
- ŷ

i
 is residuals , y

i
 and  are, 

respectively, the observed and predicted values 
of the response variable for individual i . A 
major problem with the Durbin–Watson test 
used to be that the rejection region depends not 
only on the significance level a  of the test, but 
also on the regression vector X . Durbin et. al. 

[5] gave the familiar bounds D
U

and for  

which depends only on a ,n  such that (when 

testing against positive serial correlation)   

If  D < D
L
                       reject  H

0
: r = 0  

If  D > D
U

                       do not reject H
0

: r = 0  

If  D
L
< D < D

U
               test is inconclusive. 

Example  

     In this example we examined whether the 
disturbances in the regression median model 
(2.1) are well behaved or not. According to 
Durbin–Watson test, therefore the null 

hypothesis of no serial correlation ( H
0

: r = 0), 

against ( H
1
: r > 0). 

The data set of X  and Y   is given in table 1  

Table 1: 

     

By using equation (4.1) the statistic test is  

D(KT) = 0.77, at significances level a = 0.05, 

then table 2 gives the critical values 
corresponding to  and one regressor as 

D
L
= 1.08 and .  

Since , then we 

reject H
0

: r = 0 and conclude that the errors 

are positively autocorrelated. 
 
Table 2: critical values of the Durbin-
Watson statistic 

 

 
K= number of regressors. 
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Fig. (1) estimated quadratic regression by 

Kuhn-Tucker conditions 

 
5. Comparison of Kuhn-Tucker 
Estimation and Least Squares 
Estimation on Quadratic Regression  
 
The data in table 1 has been studied by using 
least square method. 

By using SPSS program for this example, we 
get the following analysis data: 

b̂
1
= 3.062,

         

 b̂
2
= 0.320. 

Then the quadratic regression equation 
estimated by least square (LS) method given 
by: 

  ŷ
i
(LS) = (3.062)x

i
+ (0.320)x

i
2 ,i = 1,...,15   (5.1) 

 

Fig. (2): estimated quadratic regression by 
least square method 

 

The estimated quadratic regression is illustrated 
in Fig. (3) as a comparison between Kuhn-
Tucker (KT) conditions and least square (LS) 
method 
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Fig. (3): estimated quadratic regression by 
Kuhn-Tucker (KT) conditions and least 

square (LS) method 

Residual values can be calculated as shown in 
the following table (3). 

Table (3): 

 

By using equation (4.1) the statistic test is  

D(LS) = 0.85, at significances level , 
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table 2 gives the critical values corresponding 

to n = 15and one regressor as   and 

D
U
= 1.36 .  

 Since , then we 

reject  and conclude that the errors 

are positively autocorrelated. 

The result shows that, the statistic Durbin–
Watson test value in Kuhn-Tucker estimation 

 is less than its value in least square 

estimation .  

Conclusion 

     In this paper, we introduce a new method to 
estimate the parameter for a quadratic 
regression model by using Kuhn-Tucker 
conditions. According to the Durbin–Watson 
test we show that there is positively 
autocorrelation between the errors for the 
regression curve, this means that our estimators 
are a suitable estimator in the case of fitting 
data. 
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