[1] C. Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors, Springer-Verlag, New York, 1982.
[2] Lorenz EN., Deterministic nonperiodic ow, J. Atmospheric Sci, 20(2) (1963) 130-141.
[3] S. Momani, Non-perturbative analytical solutions of the space and time fractional Burgers equations, Chaos, Solitons and Fractals 28 (2006) 930-937.
[4] Z. Odibat and S. Momani, Approximate solutions for boundary value problems of time-fractional wave equation, Appl. Math. Comput., 181 (2006) 767-774.
[5] I. Hashim, M.S.M. Noorani, R. Ahmad, S.A. Bakar, E.S. Ismail and A.M. Zakaria, Accuracy of the Adomian decomposition method applied to the Lorenz system, Chaos, Solitons and Fractals 28 (2006) 1149-1158.
[6] S. Momani and Z. Odibat, Analytical solution of a time-fractional NavierStokes equation by Adomian decomposition method, Appl. Math. Comput. 177 (2006) 488-494.
[7] He JH, Homotopy perturbation technique, Comput. Meth. Appl. Mech. Engng., 178 (1999) 257-262.
[8] He JH, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Non-Linear Mech., 35(1) (2000) 37-43.
[9] He JH, Approximate analytical solution of Blasius equation, Commun Nonlinear Sci. Numer. Simul., 3 (1998) 260-263.
[10] M.A. Noor and S.T. Mohyud-Din, An efficient algorithm for solving fifth-order boundary value problems, Math. Comput. Model, 45(7-8) (2007) 954-964.
[11] TS. Gill, A. Singh, H. Kaur, NS. Saini and P. Bala. Ion-acoustic solitons in weakly relativistic plasma containing electron-positron and ion, Physics Letters A 361 (2007) 364-367.
[12] F. Shakeri and M. Dehghan, Inverse problem of discussion equation by Hes homotopy perturbation method, Physica Scripta, 75(4) (2007) 551-556.
[13] L. Qi, L. XiaoXin and Z. ZhiGang, Sufficient and necessary conditions for Lyapunov stability of Lorenz system and their application, SCIENCE CHINA Information Sciences, 53(8) (2010) 1574-1583.
[14] J. Alvarez, Synchronization in the Lorenz System: Stability and Robustness, Nonlinear Dynamics 10(1) (1996) 89-103.
[15] A.K. Alomari, M.S.M. Noorani, R. Nazar and C.P. Li, Homotopy analysis method for solving fractional
Lorenz system, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010) 1864-1872.
[16] M.S.H. Chowdhury, I. Hashim and S. Momani, The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system, Chaos, Solitons and Fractals, 40 (2009) 1929-1937.
[17] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, New York, 1993.
[18] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[19] He JH. Homotopy perturbation technique. Comput. Math. Appl. Mech. Eng. (1999) 178- 257.
[20] S.J. Liao, An approximate solution technique not depending on small parameters: a special example, Int. J. Non-Linear Mechanics 30 (3) (1995) 371-380.
[21] S.J. Liao, Boundary element method for general nonlinear dierential operators, Engineering Analysis with Boundary Element, 20(2) (1997) 91-99.
[22] A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos, Solitons and Fractals 39 (2009) 1486-1492.
[23] M. Chowdhury and I. Hashim, Application of multistage homotopy-perturbation method for the solutions of the Chen system, Nonlinear Analysis: RealWorld Applications 10 (2009) 381- 391.